

AN ALGORITHMIC STATE

MACHINE SIMULATION PACKAGE

FOR TEACHING PURPOSES

Prepared by: Joseph Milburn

Supervisor: Samuel Ginsberg

Submitted to the Department of Electrical Engineering in partial

fulfilment of the requirements for the degree of Bachelor of Science in

Electrical and Computer Engineering at the University of Cape Town

October 2006

 i

Declaration

I Joseph Milburn declare that this thesis, An ASM Simulation Package for Teaching, is

entirely my own work except for where indicated. All work by other authors has been

cited.

This thesis is submitted in partial fulfilment of the requirements for the undergraduate

degree of Bachelor of Science in Electrical and Computer Engineering at the

University of Cape Town, and has not been submitted to any other university or

examining body.

Signed: Date: 22 October 2006

Joseph T. Milburn

 ii

Acknowledgements

I would like to thank my supervisor Samuel Ginsberg for giving me the opportunity to

write this thesis, and for his help and advice, it was much appreciated.

I thank the 3
rd
 year electrical engineering students who helped test the system,

particularly Arjun Rhadakrishnan, Gregor George and Qusai Khanbhai.

I would also like to thank my father for all his support and guidance, and of-course for

his money without all of which I could never have got this far.

Lastly I would like to thank my close friends at UCT without whose motivation and

support I could never have overcome all the memory violations and broken pointers

that plagued my existence during this project. In particular I thank Colleen Barry (for

her uniquely aggressive motivation style), Dango Mkandawire et al. (for helping me

“de-stress”), and Bianca Dolly (for taking me surfing).

 iii

Abstract

Introduction

A processing task can be performed by a series of register micro-operations

controlled by a sequencing mechanism. The micro-operations can be represented

as a hardware algorithm with a series of routines. Deriving the hardware

algorithms to perform specific processing tasks is the biggest and most creative

challenge in digital logic design. One of the approaches used in overcoming this

challenge is the algorithmic state machine (ASM) chart, which has special

properties tying it to the hardware implementation of the algorithm it represents.

Objectives

This project aims to develop a simulation environment with a graphical user

interface that offers university students grounding in ASM chart theory. The

package should:

• Allow ASM elements to be inserted onto an ASM diagram.

• Verify that the constructed ASM diagram is correct.

• Allow elements of the ASM to be associated with inputs and outputs.

• Provide for the inputs to be stimulated and outputs observed while the

simulation runs.

ASM Theory

An ASM consists of three types of element:

• States, which represent the stage of execution of the hardware algorithm

• Decision boxes, which direct flow of control to one of multiple exit paths

depending on a vector or binary input associated with them

• Conditional output boxes, which follow state boxes and which activate

outputs or register operations when the conditions leading to them are met.

 iv

Choice of Development Environment

The ASM diagram was implemented using a dynamic array or list of elements,

thus C++ was chosen over Java because of its provision for arbitrary memory

access. The development environment chosen was wxWindows, because:

• It is very complete.

• Many compilers and platforms are supported: Windows, Linux, Mac, Unix.

• Because of its popularity there is a lot of documentation available for it.

• It is free for personal and commercial use.

• Whenever possible, wxWindows uses the platform SDK (software

development kit) resulting in a native look and feel.

Software Design

The Unified Modelling Language, UML, was used to model the software. The

software design process entailed specifying use-case models, Class-

Responsibility-Collaborator or CRC cards, a class relationship model and object

behaviour models (interaction and state diagrams).

Conclusions and Recommendations

A graphical user interface (GUI) allowing an ASM diagram to be built,

experimented with and verified was successfully implemented. The simulation

package achieves its primary goal of demonstrating ASM’s to afford students a

clear understanding of how they work.

The feature set of the final simulation package is rather limited. Listed future

developments are as follows:

• Allow the diagram canvas to be resized.

• Allow the interface layout to be customized to the user’s preference.

• Add state names to the diagram to correspond convention.

• Add a list of elements and variables to the main window.

• Implement register operations and Boolean expressions.

• Provide a file system to allow diagrams to be saved and restored from disk.

• Develop an extension package that develops a digital logic schematic

directly from the ASM diagram.

 v

Table of Contents

Declaration ..i

Acknowledgements ..ii

Abstract..iii

Table of Contents ...v

List of Figures..ix

List of Tables ...xi

Glossary ..xii

CHAPTER 1

INTRODUCTION ..1

1.1 Subject...1

1.2 Background ..1

1.3 Objectives..2

1.4 Plan of Development ..2

CHAPTER 2

ALGORITHMIC STATE MACHINE THEORY ...4

2.1 Elements of an Algorithmic State Machine ...4

2.1.1 State Box ...4

2.1.2 Scalar Decision Box..5

2.1.3 Conditional Output Box ..6

2.1.4 Vector Decision Box...7

2.2 ASM Block..7

2.3 Timing Considerations ..9

2.4 Example ASM...10

2.4.1 Hardware Algorithm ...10

2.4.2 Multiplier Block Diagram ...11

2.4.3 Binary Multiplier ASM Chart ..13

2.5 One Flip-Flop per State ...15

CHAPTER 3

GUI DEVELOPMENT ENVIRONMENT ..19

3.1 Introduction..19

3.2 Choice of Programming Language...20

3.3 Choice of Development Environment ..21

CHAPTER 4

UML THEORY ...23

4.1 Use-case specifications ...23

4.2 Class-Responsibility-Collaborator Cards..25

4.3 Class Relationship Models ..26

4.3.1 Association ..29

 vi

4.3.2 Navigability...30

4.3.3 Generalisation ..30

4.3.4 Aggregation ..31

4.3.5 Composition..31

4.3.6 Dependency...32

4.4 Object Behaviour Models..33

4.4.1 UML Sequence Diagram ...33

4.4.2 UML State Diagram ..34

CHAPTER 5

PROJECT PLAN ..36

5.1 Introduction..36

5.1.1 Major Software Functions ..36

5.1.2 Performance and Behaviour Issues..36

5.1.3 Logistic and Technical Constraints..37

5.2 Project Estimates ...37

5.2.1 Effort / Difficulty..37

5.2.2 Time Estimate...37

5.3 Project Schedule...37

5.3.1 Project Task Set ...37

5.3.2 Functional Decomposition...38

CHAPTER 6

SOFTWARE DESIGN ...39

6.1 Use-Case Specifications ...39

6.1.1 Place Element Use-Case ..39

6.1.2 Edit Element Parameters Use-Case ...41

6.1.3 Connect Elements Use-Case..43

6.1.4 Select Element Use-Case..45

6.1.5 Add Variable Use-Case..47

6.1.6 Edit Variable Use-Case..49

6.1.7 Delete Variable Use-Case ..51

6.1.8 Run Machine Use-Case..52

6.1.9 Step Machine Use-Case ...54

6.1.10 Reset Machine Use-Case..55

6.1.11 New ASM Use-Case ...56

6.1.12 Save ASM Use-Case...58

6.1.13 Open ASM Use-Case..60

6.1.14 Help Use-Case...61

6.1.15 Set ASM Properties Use-Case...62

6.2 Class-Responsibility-Collaborator Cards..64

6.4 Object Behaviour Models..70

6.4.1 Sequence Diagram ...70

CHAPTER 7

SOFTWARE ACCEPTANCE TESTING ..76

7.1 Test Case 1: Place Element ...76

7.1.1 Test Case Number..76

7.1.2 Description..76

 vii

7.1.3 Programmer’s evaluation..76

7.1.4 Users’ comments ..76

7.1.5 Result...76

7.2 Test Case 2: Edit Element Parameters ..77

7.2.1 Test Case Number..77

7.2.2 Description..77

7.2.3 Programmer’s evaluation..77

7.2.4 Users’ comments ..77

7.2.5 Result...77

7.3 Test Case 3: Connect Elements...77

7.3.1 Test Case Number..77

7.3.2 Description..77

7.3.3 Programmer’s evaluation..77

7.3.4 Users’ comments ..77

7.3.5 Result...77

7.4 Test Case 4: Select Element ..77

7.4.1 Test Case Number..78

7.4.2 Description..78

7.4.3 Programmer’s evaluation..78

7.4.4 Users’ comments ..78

7.4.5 Result...78

7.5 Test Case 5: Add Variable ..78

7.5.1 Test Case Number..78

7.5.2 Description..78

7.5.3 Programmer’s evaluation..78

7.5.4 Users’ comments ..78

7.5.5 Result...78

7.6 Test Case 6: Edit Variable ..79

7.6.1 Test Case Number..79

7.6.2 Description..79

7.6.3 Programmer’s evaluation..79

7.6.4 Users’ comments ..79

7.6.5 Result...79

7.7 Test Case 7: Delete Variable ...79

7.7.1 Test Case Number..79

7.7.2 Description..79

7.7.3 Programmer’s evaluation..79

7.7.4 Users’ comments ..79

7.7.5 Result...79

7.8 Test Case 8: Run Machine ..80

7.8.1 Test Case Number..80

7.8.2 Description..80

7.8.3 Programmer’s evaluation..80

7.8.4 Users’ comments ..80

7.8.5 Result...80

7.9 Test Case 9: Step Machine ..80

7.9.1 Test Case Number..80

7.9.2 Description..80

7.9.3 Programmer’s evaluation..80

7.9.4 Users’ comments ..81

 viii

7.9.5 Result...81

7.10 Test Case 10: Reset Machine ..81

7.10.1 Test Case Number..81

7.10.2 Description..81

7.10.3 Programmer’s evaluation..81

7.10.4 Users’ comments ..81

7.10.5 Result...81

7.11 Test Case 11: Create New ASM Diagram..81

7.11.1 Test Case Number..81

7.11.2 Description..81

7.11.3 Programmer’s evaluation..81

7.11.4 Users’ comments ..81

7.11.5 Result...81

7.12 Test Case 12: File System..82

7.12.1 Test Case Number..82

7.12.2 Description..82

7.12.3 Programmer’s evaluation..82

7.12.4 Users’ comments ..82

7.12.5 Result...82

7.13 Test Case 14: Get Help ..82

7.13.1 Test Case Number..82

7.13.2 Description..82

7.13.3 Programmer’s evaluation..82

7.13.4 Users’ comments ..82

7.13.5 Result...82

7.14 Test Case 14: Set ASM Properties..82

7.14.1 Test Case Number..82

7.14.2 Description..83

7.14.3 Programmer’s evaluation..83

7.14.4 Users’ comments ..83

7.14.5 Result...83

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS..84

References...85

 ix

List of Figures

Fig. 2.1.1 State Box..5

Fig. 2.1.2 Scalar Decision Box ..5

Fig. 2.1.3a Conditional Output Box...6

Fig. 2.1.3b Conditional Output Example...6

Fig. 2.1.4 Vector Decision Box ...7

Fig. 2.2 Example ASM Block..8

Fig. 2.3 Timing Diagram for ASM Example...9

Fig. 2.4.1a Hand Multiplication Example..10

Fig. 2.4.1b ..11

Fig. 2.4.2 Binary Multiplier Block Diagram..12

Fig. 2.4.3 ASM Chart for Binary Multiplier..14

Fig. 2.5a: State box Transformation Rule..16

Fig. 2.5b: Scalar Decision Box Transformation Rule..16

Fig. 2.5c: Vector Decision Box Transformation Rule ...16

Fig. 2.5d: Junction Transformation Rule ...17

Fig. 2.5e: Conditional Output Transformation Rule..17

Fig. 2.5f: Binary Multiplier Control Unit with One Flip-flop per State18

Fig. 4.1a Actor and Use-Case ..24

Fig. 4.1b: Example Use-Case Diagram..25

Fig: 4.3a: Example UML Class Diagram ..28

Fig. 4.3b: UML Relationship Multiplicity...29

Table 4.3: UML Multiplicity Indicators ..29

Fig. 4.3.1: UML Class Association..30

Fig. 4.3.2: UML Class Navigability...30

Fig. 4.3.3: UML Class Generalisation ...30

Fig. 4.3.4: UML Class Aggregation...31

Fig. 4.3.5a: UML Class Composition ..31

Fig. 4.3.5b: Recursive Composition ..32

Fig. 4.3.6: UML Class Dependency...32

Fig. 4.4.1: Example UML Sequence Diagram...34

Fig. 4.4.2: Example State Diagram..35

Fig. 5.3.2: System Decomposition...38

 x

Table 5.3.3: Module Functionality...38

Fig. 6.1.1: Place Element Use-Case – UC1 ...40

Fig. 6.1.2: Edit Element Parameters – UC2...42

Fig. 6.1.3: Connect Elements Use-Case – UC3...43

Fig. 6.1.4: Select Element Use-Case – UC4 ..46

Fig. 6.1.5: Add Variable Use-Case – UC5...48

Fig. 6.1.6: Edit Variable Parameters Use-Case – UC6..49

Fig. 6.1.7: Delete Variable Use-Case – UC7 ...51

Fig. 6.1.8: Run Machine Use-Case – UC8...53

Fig. 6.1.9: Step Machine Use-Case – UC9 ..54

Fig. 6.1.10: Reset Machine Use-Case – UC10 ..56

Fig. 6.1.11: New ASM Diagram Use-Case..57

Fig. 6.1.12: Save ASM Diagram Use-Case – UC12..58

Fig. 6.1.13: Open ASM Diagram Use-Case – UC13...60

Fig. 6.1.14: Help Use-Case – UC14 ..62

Fig. 6.1.15: Set ASM Properties Use-Case – UC15 ..63

Fig. 6.3: ASM Simulator Object Relationship Model ...69

Fig. 6.4.1a: Place Element Sequence Diagram..70

Fig. 6.4.1b: Edit Element Sequence Diagram..70

Fig. 6.4.1c: Connect Element Sequence Diagram ...71

Fig. 6.4.1d: Move Element Sequence Diagram ...71

Fig. 6.4.1e: Delete Element Sequence Diagram ..72

Fig. 6.4.1f: Add Variable Sequence Diagram..72

Fig. 6.4.1g: Edit Variable Parameters Sequence Diagram...73

Fig. 6.4.1h: Delete Variable Sequence Diagram..73

Fig. 6.4.1i: Simulate Machine Sequence Diagram ..74

Fig. 6.4.2: ASM Simulator State Chart Diagram...75

 xi

List of Tables

Table 4.3:UML Multiplicity Indicators ...29

Table 5.3.1: Task Phases..37

Table 5.3.3: Module Functionality...38

Table 6.2a: ASM Simulator CRC Card ...64

Table 6.2b: ASM Diagram CRC card..65

Table 6.2c: ASM Toolbar CRC card ...65

Table 6.2d: Active Variables List CRC card ...66

Table 6.2e: ASM Dialogs CRC card..66

Table 6.2f: Element CRC card...67

Table 6.2g: Variable CRC card..67

Table 6.2h: File System CRC card ..68

 xii

Glossary

ASM – Algorithmic State Machine.

GUI – Graphical User Interface

PIGUI – Platform Independent Graphical User Interface

UML – Unified Modelling Language

CRC – Class-Responsibility-Collaborator

OO – Object Oriented

SDK – Software Development Kit

 1

CHAPTER 1

INTRODUCTION

1.1 Subject

This thesis project aims to design and implement a software simulation package

for algorithmic state machines (ASM’s). The simulator will be used as a teaching

tool to demonstrate how ASM’s work to university students.

1.2 Background

A processing task can be performed by a series of register micro-operations

controlled by some sequencing mechanism [1]. The sequence of register micro-

operations can in turn be represented as a hardware algorithm with a series of

routines or steps that perform the task desired [1]. The data-path and control unit

of a digital system can both be specified by such algorithms. The data-path is that

part of the digital system which performs arithmetic and data processing

operations. The control unit retrieves instructions from the program stored in

memory and provides the control signals that manipulate the data-path in order to

process those instructions [1]. The data-path and control unit are used in

combination with memory to store instructions and data, and various peripherals

to perform input and output, and are thus the heart of any digital system.

Deriving the correct hardware algorithms to perform specific processing tasks is

the biggest and most creative challenge in digital logic design [1]. One of the

approaches used in overcoming this challenge is to specify the procedural steps

and decision paths that define a hardware algorithm in a flowchart.

The algorithmic state machine (ASM) chart is a type of flowchart with special

properties tying it to the hardware implementation of the algorithm it represents

[1]. An ASM describes both the sequence of routines that perform the task and the

timing relationship between control unit state changes and the actions taken by the

data-path in response to clock pulses [1]. Once an ASM chart has been specified

for a particular task, the digital logic required to perform the task can be

 2

developed directly from the chart itself using one flip-flop per state. This

decreases design time and effort, which translates to reduced non-recurring

engineering costs in the development of a system. To take advantage of this

potential saving, it is essential that engineers have a firm grounding in exactly

how ASM charts work. This project aims to develop a simulation environment

with an intuitive graphical user interface that offers university level students such

a grounding through experimentation with ASM’s and their functionality.

1.3 Objectives

The simulation package should provide a graphical user interface (GUI) that

allows components of ASM’s to be inserted onto an ASM diagram workspace. In

this way the user should be able to construct and experiment with an ASM. The

system should verify that the ASM constructed on the diagram is correct in terms

of the standard rules of building an ASM. The user should also be able to

associate elements of the ASM with a set of inputs and outputs, such as LED's,

buttons, motors and sensors. While the simulator runs the machine the user should

be able to stimulate the inputs and observe the resultant outputs to verify that the

constructed ASM has been modelled correctly. It is essential that the simulator

software be easy to use, that it encapsulates the full functionality of ASM’s and

that any diagram constructed using the software is verified as being correct if and

only if it follows all the rules of ASM’s.

1.4 Plan of Development

Chapter 2 examines the theory of ASM’s. Each of the elements of ASM’s are

described, their representation and on an ASM diagram and their functionality

explained. ASM Blocks are then explained,

Chapter 3 motivates the programming language and GUI development

environment choice made for the implementation. Some of the issues involved in

GUI development are also examined.

Chapter 4 reviews the Unified Modelling Language (UML) which was used to

model the system. The types of models used in the design are explained. These are

use-case specifications, class-responsibility-collaborator cards, class relationship

models and object behaviour models.

 3

Chapter 5 presents the project plan and software design is presented. The design

consists of the modelling techniques explained in Chapter 4.

Chapter 6 entails the software acceptance testing, which outlines the results of

the project, and includes feedback from third year engineering students who tested

the software.

Chapter 7 evaluates the project success and suggests future development plans

and improvements.

 4

CHAPTER 2

ALGORITHMIC STATE MACHINE THEORY

This chapter of the report aims to describe the theory of ASM’s, the elements that

they are made up of and how ASMs are timed in response to clock pulses. An

example ASM chart is then developed to demonstrate the rules and functionality

of ASMs further. Finally the one flip-flop per state method of converting an ASM

into physical components that will execute the hardware algorithm is presented.

2.1 Elements of an Algorithmic State Machine

An ASM chart consists of three basic elements: The state box, the scalar decision

box and the conditional output box. Vector decision boxes can be added for

simplification and convenience[1]. A vector decision box can easily be broken

down into multiple scalar decision boxes. Likewise a scalar decision box can be

considered a specific type of vector decision box, as shown in the following

section.

2.1.1 State Box

A processing task has various states defined which indicate at which stage the

control sequence is at any point in time. Such a state is indicated in an ASM

diagram by a state box. A state box is represented by a rectangle containing

register transfer operations and signals, with a symbolic name in the top left

corner [1]. When control enters a particular state, the register transfer operations

or output signals can be activated. All signals that are not represented within a

particular state are implicitly 0 within that state [1]. In the example state box

shown in Fig. 2.1.1 (Mano and Kime, 2004:366) the state is named S1. S1 is

assigned a binary code of 000 and contains one register and one signal. Therefore

on any clock pulse that occurs while the flow of control is within state S1, the

value 7 is transferred into register R, and the signal SIG is asserted [1]. All other

signals are de-asserted.

 5

Fig. 2.1.1 State Box

2.1.2 Scalar Decision Box

A scalar decision box is represented by a diamond shape containing a one bit

condition [1]. The condition is either a one bit input or a Boolean expression

consisting only of inputs. The decision box has two possible exit paths, one path is

taken if the condition is true, and the other if it is false [1]. An example decision

box is shown in Fig. 2.1.2. (Mano and Kime, 2004:366) When the condition is

true, the flow of control of the system follows the right hand exit path, and when

the condition is false the left hand path is taken.

Fig. 2.1.2 Scalar Decision Box

 6

2.1.3 Conditional Output Box

The conditional output box is an oval shaped element with rounded corners, to

distinguish it from the state box [1]. The entry path to a conditional output box

from a state box must pass through one or more decision boxes [1]. Thus the

register operation or output signals inside the conditional output box will be

activated only if the conditions specified in the decision boxes leading to the

output box are met, hence the term conditional output [1]. Fig. 2.2.3a (Mano and

Kime, 2004:366) shows a generic representation of a conditional output box. In

Fig. 2.2.3b (Mano and Kime, 2004:366), when the system flow of control reaches

the scalar decision box, if the input IN is low then control passes to the conditional

output box and the output variable OUT is set.

Fig. 2.1.3a Conditional Output Box

Fig. 2.1.3b Conditional Output Example

 7

2.1.4 Vector Decision Box

The vector decision box serves as an extension to the scalar decision box,

allowing an n-bit condition variable to be used for the decision. The condition is

made up of n binary inputs or Boolean expressions, each of which must be

dependent only on inputs [1]. If n = 1 the element is in effect a scalar decision

box, so in the stricter sense n must be greater than 1 for a vector decision box. A

vector decision box has 2
n
 possible exit paths (where n > 1), one for each possible

value of the input variable. For the purposes of the ASM simulation package,

decision boxes are generalised to vector decision boxes and n may be any integer

between 1 and 4 resulting in up to 16 exit paths. A vector decision box is shown in

Fig. 2.1.4 (Mano and Kime, 2004:366).

Fig. 2.1.4 Vector Decision Box

2.2 ASM Block

An ASM block consists of a state box, and all the decision and conditional output

boxes on the path between the state box and the same or other state boxes [1].

When a clock event occurs within a block:

• All outputs and register operations for which conditions are met are

activated.

• Control is transferred to the next state specified by the decision paths

leading from the block state. [1]

An example ASM block is shown in Fig. 2.2 (Mano and Kime, 2004:367). In the

figure when the flow of control reaches the ASM block, the ASM enters the IDLE

 8

state. This is the block state, while ever the control sequence is within the block

the state will be IDLE and the output named READY will be asserted. When the

next clock pulse occurs, if the input IN is 0 then the system stays in the IDLE

state. If IN is 1 then the register operation R1←0 (clearing register R1) occurs,

and one of the next states S0, S1, S2 or S3 is entered depending on the value of

the vector Q(1:0) 17.1[1].

R1←0

IN

READY

0 1

Q(1:0)

00

01 10

11

ASM BLOCK
IDLE

S0

S1 S2

S3

Entry

Exits

Fig. 2.2 Example ASM Block

 9

2.3 Timing Considerations

To illustrate how the timing of the ASM occurs in response to clock events, the

simple example ASM block in Fig. 2.2 will be used. A timing diagram showing

what happens to the various signals associated with the block is shown in Fig. 2.3

(Mano and Kime, 2004:368). During clock cycle 1 the ASM is in the IDLE state

and so READY is asserted. When clock cycle 2 begins, the IN input signal is

asserted. Assuming that all flip-flops are positive edge triggered, the system

remains in the IDLE state since a signal must be high when the clock pulse occurs

for it to be recognized as a 1. Therefore when clock cycle 3 begins, the scalar

decision box associated with IN input takes the exit path leading to the conditional

output box, R is cleared, READY is de-asserted and the next state is chosen as S1

according to the value of the vector Q(1:0).

Fig. 2.3 Timing Diagram for ASM Example

 10

2.4 Example ASM

To illustrate the formation of ASM charts the Mano and Kime’s binary multiplier

example is developed below (2004:369). The multiplier is used to multiply two n-

bit unsigned integer values giving a 2n-bit integer result. The hardware algorithm

is first developed, then a datapath and control unit for its implementation is

proposed, and finally the ASM that describes these two units is derived.

2.4.1 Hardware Algorithm

Multiplying two binary numbers on paper involves successive shifting and adding

of the multiplicand, best illustrated by a simple example. As illustrated in Fig.

2.4.1a (Mano and Kime, 2004:369), to carry out the multiplication each

successive bit of the multiplier is examined, starting from the least significant bit

[1]. If the bit is a one the multiplicand is brought down for the final addition, if the

bit is a 0 then all zeros are brought down [1]. Each successive number brought

down is left shifted one position from the last.

Fig. 2.4.1a Hand Multiplication Example

When the multiplication procedure is implemented in digital hardware the process

changes slightly. In terms of digital circuitry it is less expensive to add the n

shifted values that result in the product one at a time instead of all together at the

end [1]. Therefore each time the multiplicand or zeros are copied they are

immediately added to a partial product which is stored in a temporary register

ready for the next addition. Also, instead of shifting the copies of the multiplicand

(or all zeros) to the left, the partial products in the register are shifted to the right

one position, resulting in the addend and augend being in the same relative

position as before [1]. Thus at each successive stage of the multiplication, we

 11

examine the next bit of the multiplier, starting from the least significant bit [1]. If

the bit is a 1, we add the multiplicand to the partial product; otherwise there is no

need to add all zeros so the partial product is simply shifted to the right. The

resultant sum is shifted to the right one position to form the partial product for the

next multiplication. The procedure for implementing the “on paper” example from

Fig. 2.4.1a is shown in Fig 2.4.1b (Mano and Kime, 2004:370).

Fig. 2.4.1b

Note that the temporary overflow that occurs as a result of the 2
nd
 addition is not a

problem since the overflowing (1) is shifted back into the regular most significant

position in the next step of the multiplication.

2.4.2 Multiplier Block Diagram

The hardware implementation of the multiplier is shown in Fig. 2.4.2 (Mano and

Kime, 2004:371). The algorithm described previously is implemented in the

hardware as follows [1]:

• The multiplicand and multiplier are loaded into registers B and Q

respectively

• The least significant bit of Q is shifted into the control unit during each

stage of the multiplication. This bit is used to determine whether to add A

and B then perform a right shift on register A or just perform the shift.

 12

• At the same time the least significant bit of the partial product is shifted

into the just most significant position of Q which is now vacant due to the

multiplier right shift.

• The binary adder is used to add A and B before each shift.

• The C flip-flop stores any carry be it 0 or 1 after each addition and is reset

to nought after each shift

• Counter P keeps count of the number of add and shift operations that have

taken place and counts down from n-1 to nought, when the last shift and

add occurs.

• The control unit is triggered by the signal G, which activates the

multiplication sequence.

Fig. 2.4.2 Binary Multiplier Block Diagram

 13

2.4.3 Binary Multiplier ASM Chart

An ASM which models the sequence of operations of the binary multiplier is

shown in Fig. 2.4.3 (Mano and Kime, 2004:373). The multiplication sequence will

only begin if G is 1 on a clock cycle. If this occurs, the one bit carry register C is

cleared, as is the partial product register A [1]. We assume that the multiplier and

multiplicand are already loaded into registers Q and B respectively. The value n-1

which will result in n shift and add sequences is moved into counter P. Control

then moves to MUL0, which is the initial state of the multiplication sequence

ASM block. On the next clock pulse, the least significant bit of the multiplier Q0 is

used to decide whether to add A and B and carry any overflow into Cout before the

state MUL1 [1]. In MUL1 the shift operation occurs, represented by the register

transfer expression that follows [1]:

C←0, C || A || Q ← sr C || A || Q

The notation C || A || Q simply means a composite register made up of the

registers C, A and Q [1]. The notation sr means “shift right”. The details of the

register operations are however unimportant in this context. The shift and add

sequence will repeat until the counter counts down to zero. This is indicated by

the zero detect signal Z being high, which ends the multiplication and returns the

system to the idle state until G is asserted again [1].

 14

G
10

C←0, A←0

P←n-1

MUL0

Q0

10

A←A+B,

C←Cout

IDLE

C←0, C || A || Q←sr C || A || Q,

P←P - 1

MUL1

Z
10

Fig. 2.4.3 ASM Chart for Binary Multiplier

 15

2.5 One Flip-Flop per State

When implementing the control unit of a digital system, two approaches may be

used. The first is the use of a sequence register to store control states, and a

decoder to provide the output signal corresponding to each of the respective

states [1]. This method, while efficient in the number of flip-flops used, involves

the development of a state table to design the sequential logic [1]. In order to

obtain the input equations for the circuit flip-flops, the state table Boolean

functions must be simplified [1]. This requires excessive work, particularly for

systems with a large number of states, which is the case for most useful

applications.

Another approach involves the use of one flip-flop per state, where the digital

logic for the control unit is derived directly from the ASM diagram. This

method is far less complex and saves design time for complex systems with a

large number of states [1]. The trade-off is the increased number of flip-flops

required for the sequential circuit. However the cost of using more flip-flops

both in terms of money spent and PCB real estate is likely to be negligible

compared to engineer time saved for most systems designs.

The rules for translating ASM diagram components into digital components are

shown in Figs. 2.5a to 2.5e (Mano and Kime, 2004:381), and a block diagram of

a “one flip-flop per state” control unit for the binary multiplier example is

shown in Fig 2.5f (Mano and Kime, 2004:383).

 16

Fig. 2.5a: State box Transformation Rule

Fig. 2.5b: Scalar Decision Box Transformation Rule

Fig. 2.5c: Vector Decision Box Transformation Rule

 17

Fig. 2.5d: Junction Transformation Rule

Fig. 2.5e: Conditional Output Transformation Rule

 18

D

 C

 DEMUX

EN D0

A0 D1G

IDLE

D

 C

MUL0 Q0

D

 C

MUL1

 DEMUX

EN D0

A0 D1Z
Clock

Initialize

Clear_C

Load

Shift_dec

Fig. 2.5f: Binary Multiplier Control Unit with One Flip-flop per State

 19

CHAPTER 3

GUI DEVELOPMENT ENVIRONMENT

This chapter deals with the choice of programming language and development

environment for the implementation of the ASM system and GUI. The required

features of the development toolkit are outlined, each criterion is then discussed.

Finally a GUI development toolkit that closely meets the requirements is chosen

3.1 Introduction

The criteria used to choose the programming language and GUI development

environment are as follows:

• Availability: the development environment and compiler should be

available for free.

• Ease of development: given the limited timeframe of the project and the

inexperience in developing GUIs this was a decisive factor

• Availability of documentation: in the form of online help, tutorials and

wizards

• Richness of development kit and programming language features: all the

features required of the system and interface should be supported

• Platform Independence: or portability to different target computer systems

such as Windows or UNIX.

One motivation for the final criterion was that the UCT computer science

department runs exclusively UNIX based machines. If the package were to be

used in this department in the future, it would be desirable for the source code to

be easily portable to a UNIX platform.

In the following sections some of the issues surrounding GUI development with

particular reference to the ASM simulator package are discussed.

 20

3.2 Choice of Programming Language

GUI development toolkits are available for various programming languages

including C, C++, Smalltalk, Java, Ada, Tcl, and Python [4]. Most new GUI kits are

supported by object-oriented programming languages, because GUI development

lends itself well to the OO paradigm [4]. The programming language of choice for

most GUI development toolkits is C++, due to the popularity of the language, its

flexibility in memory manipulation and pointer use [4].

For the purposes of this thesis project the two programming languages considered

were Java and C++, purely because of the programmer’s experience in these two

languages.

One of the main differences between the two languages was that Java was designed

to be easier to use than C++. The Java language focuses on ease of programming

where C++ is more execution efficient [3]. Some of the areas in which the two

languages differ are:

• Compilation vs Interpretation: C++ is usually compiled where Java uses a

mix of interpretation and on the fly compilation. Compilation results in run-

time efficiency where interpretation yields quicker compilation [5].

• Efficiency of Generated Code: C++ generates relatively fast, memory

efficient executables whereas Java programs have widely reported

performance problems [5].

• Automatic memory management: Java has garbage collection, whereas C++

leaves the tedious and error-prone task of reclaiming unused memory to the

programmer [5].

• Memory manipulation: C++ allows arbitrary memory access and allows

access of objects through the use of pointers where Java allows memory

access only through the objects themselves [3].

It is desirable for the simulator package to be execution efficient while providing an

intuitive graphical user interface. The easiest and most efficient way to implement

the ASM diagram for the package is a dynamically managed list of elements, with

each element object pointing to one or more elements in the diagram. Variables can

then be associated with each element again through a dynamically allocated list.

 21

This will allow easy manipulation of the diagram components, including adding and

deleting elements and variables while maintaining the structure of the ASM chart.

This functionality points to the use of C++ rather than Java despite the hassle of

manual garbage collection.

3.3 Choice of Development Environment

Apart from the criteria put forth in the introduction to this chapter, the main issue

considered when choosing the development toolkit was the method by which

controls are placed onto the windows of the program interface.

Placing the controls on their parent window in a layout that is both pleasing to the

eye and logical, with similar controls such as buttons or menu items grouped

together, is one of the key challenges of GUI development [7].

The layout of the design can be defined in too ways, either by defining the specific

positions of controls on a window as parameters to the placing functions in code, or

by using a drag and drop development environment [7]. The latter approach allows

the programmer to place controls as desired, resize them, specify custom properties

etc. This approach is easier and faster but often results in large chunks of code

which are often hard to decipher, and therefore defy the “good software

engineering” practices of maintainability and reusability [7]. The first approach can

be inefficient due to the often tedious and error-prone task of correctly positioning

and formatting the controls in code [7].

 22

The GUI development toolkit commonly used in the UCT department of electrical

engineering in the past, and one of the most widely used toolkits for C++ is

wxWindows. wxWindows uses in code functions for control placement and layout,

and has the following advantages that link it to the criteria mentioned above [6]:

• It is very complete. There are many utility classes.

• It is still heavily developed.

• Many compilers and platforms are supported: Windows, Linux, Mac, Unix.

• There is a lot of documentation.

• It is free for personal and commercial use.

• Whenever possible, wxWindows uses the platform SDK (Software

Development Kit). This means that a program compiled on Windows will

have the look and feel of a Windows program, and when compiled on a

Linux machine, it will get the look and feel of a Linux program.

 23

CHAPTER 4

UML THEORY

This chapter reviews the theory and syntax of the Unified Modelling Language.

UML is a general modelling system that can be used to model any generic

software system. Gain & Kelleher (2004) define UML as “a notational System

(including syntax, semantics and pragmatics for its notations) that is principally

graphical and aimed at modelling systems using object-oriented concepts.”

UML is not a process or methodology, nor is it proprietary. It combines the

notations of Booch, Rumbaugh and Jacobson (1997) and was standardized by the

OMG (Object Management Group).

It is widely used and has arguably become the standard modelling language for

software design. Five types of UML diagrams are described in this chapter. These

are:

• Use-case specifications

• Class-responsibility-collaborator cards

• Class relationship models

• Interaction diagrams

• State diagrams

4.1 Use-case specifications

A use case is a sequence of actions performed by a system to achieve some

observable result desired by a particular actor. An actor is someone or something

outside the system that interacts with it. Fig. 4.1a shows how an actor and use-

case is represented in UML. [8]

 24

System Boundary

Actor

UseCase

Fig. 4.1a Actor and Use-Case

Use-case specifications present a high level view of the system as seen by outside

users of the system without regard for its internal workings. Use-cases model the

behaviour of the system as a series of transactions or scenarios which describe the

interactions between the user and other external objects with the system itself.

Use-cases are used to derive the structural and behavioural models of the system,

and to construct test cases which verify the system functionality. Use-case

diagrams include [2]:

• Associations: to indicate some interaction between an actor and a use-case.

An association is depicted by a solid line, with an optional arrowhead to

specify the direction of the invocation of the interaction.

• System boundary boxes: drawn around elements of a use-case diagram to

indicate which that those elements are within the scope of a particular

system.

• Packages: to organize model elements into groups. Packages are depicted

as file folders.

Fig. 4.1b (Ambler, 2004) shows an example use-case diagram where a customer

may search for items or place an order using the “Release1” system, or obtain help

using the “Release2” system. The “place order” use-case requires the system to

interact with the payment processor external system. Similarly the “obtain help”

use-case requires interaction with customer service.

 25

Fig. 4.1b: Example Use-Case Diagram

4.2 Class-Responsibility-Collaborator Cards

CRC cards are a simple way of extracting and laying out the definitions and

interactions between classes. They are derived from the system use-case models

and define the class hierarchy as well as attributes and methods. [8]

After establishing which of the systems and actors in the use-case models can be

accepted as classes, each of the classes is assigned a type. A list of possible class

types and examples of objects that might qualify for each type is given below [8].

• External entities – other systems, devices, people

• Objects – reports, displays, signals

• Events – property transfer, completion of a series of robot movements

• Roles – manager, engineer, sales person

• Organizational Units – bank division, group, team

• Places – manufacturing floor, loading dock

• Devices – four-wheeled vehicles or computers

• Interaction (between other objects) – a purchase, a license

 26

The classes are then assigned a set of characteristics which describe the entity they

represent. Some of the characteristics that may be assigned are [8]:

• Tangibility: does the class represent a tangible (physical) or abstract

(information) entity?

• Inclusiveness: is the class atomic (includes no other classes) or aggregate

(has at least one nested object)?

• Sequencing: is the class concurrent (has its own thread of control) or

sequential (scheduled by outside resources)?

• Persistence: is the class transient (created and removed during program

operation), temporary (created during program operation and removed at

termination) or permanent (stored in a database)?

Once the class characteristics have been established each class is assigned a set of

responsibilities and collaborators. A class responsibility is a method or attribute of

that class. Thus it is the data, objects, behaviour and operations that describe and

belong to the class or object it represents. If collaboration exists between two

classes, one of the classes needs to send or receive messages from the other in

order to fulfil its purpose or carry out its tasks. Examples of types of class

collaboration that exist are [8]:

• Aggregation – one class is a member or attribute of the other

• Association – one class must acquire information from the other

• Dependency – some relationship not covered by aggregation or association

4.3 Class Relationship Models

The UML class or object relationship model is a means of modeling a system that

emphasizes the structure and attributes of objects, the relationships between them

and operations that each performs.

In designing a system one of the key issues to consider is the amount of overall

system intelligence that each class or functional entity encapsulates.

Using a large number of simple classes means that each class encapsulates less of

the overall system intelligence. Such classes are more reusable, because a small

 27

piece of a system is more likely to be useful to another system than a large chunk

of it [2].

Using a small number of complex classes means that each class encapsulates a

larger portion of the overall system intelligence. A high degree of encapsulation

makes code integration easier. It also means that classes are less likely to be

reusable and are more difficult to implement.

As a general rule a class representing an object or entity in the system should have

a single well focused purpose. The steps in developing the class relationship

model are [8]:

• Create initial design classes

• Define operations, methods and states

• Define attributes

• Define dependencies, associations and generalizations

• Evaluate results

An example of a class diagram is shown in Fig: 4.3a (Gain & Kellher, 2004).

 28

Fig: 4.3a: Example UML Class Diagram

The rectangular objects in the diagram represent classes. Each class has a name

field at the top of the rectangle, followed by an attribute field listing the class

variables. The third field of a class are the operations of the class or the functions

it performs.

A relationship defines some interaction between two classes. Various class

relationships exist and are outlined later. Each end of a class relationship may

have multiplicity associated with it. This is to indicate the number of objects that

may exist on that end of the relationship. The * symbol is used to indicate an

infinite number. In the example Fig. 4.3b, either 1 or 2 members of Class A can be

associated with 1 or more members of Class B. Table 4.3 (Ambler, 2004) shows

the potential multiplicity indicators and their meaning.

Relationship
Multiplicity

Class Label

 29

Fig. 4.3b: UML Relationship Multiplicity

Indicator Meaning

0..1 Zero or one

1 One

0..* Zero or more

1..* One or more

n Exactly n (where n>1)

0..n Zero to n (n>1)

1..n One to n (n>1)

n..* n or more (n>1)

n..m n to m (n > 1and m > n)

Table 4.3: UML Multiplicity Indicators

A label can be used to indicate further information about the nature of an

association. For example in Fig4.3a a particle can be positioned by a Voronoi

Diagram.

The various class relationship types available in UML will now be discussed.

4.3.1 Association

An association is the most general type of interaction or relationship between two

classes. The roles and multiplicity of the two classes may be indicated on the ends

of the line attaching them. Additionally the name of the association may be

indicated using a label. The other relationship types are specializations of an

association, and so share these properties. An example of a generic association is

show in Fig. 4.3.1 (Ambler 2004) where a bank teller serves a customer.

 30

Fig. 4.3.1: UML Class Association

4.3.2 Navigability

Adding an arrowhead to an association implies navigability or direction. In Fig.

4.3.2 (Ambler 2004), a student may enrol for one or more courses. The arrow

direction indicates that it is the student that enrols for a course and not vice-versa.

Fig. 4.3.2: UML Class Navigability

4.3.3 Generalisation

A UML generalisation relationship is used to signify inheritance of one class from

another. As an example, the car class show in Fig. 4.3.3 is a parent or super class.

The subclasses of the car class include a BMW class and a Mercedes class.

Subclasses are specific types of the parent class.

Fig. 4.3.3: UML Class Generalisation

 31

4.3.4 Aggregation

A UML aggregation is used to indicate an ownership [2]. A parent class owns

members of a child class. The existence of the parent class is not dependent on the

children though, and vice-versa. For example in Fig 4.3.4 a Toyota Taz has

passengers and a driver. However if the passengers or driver leave the Taz it

continues to exist. If the Taz is destroyed the passengers and driver may become

members of another vehicle.

Fig. 4.3.4: UML Class Aggregation

4.3.5 Composition

A UML composition relationship is a stronger form of aggregation where the

composite class has responsibility for the creation and destruction of the whole.

The composite whole and the parts are coincident, so members of the composite

exist for the lifetime of the whole [2]. For example in Fig. 4.3.5a a Toyota Taz has

four doors. When a Taz class is created or destroyed it is responsible for creating

or disposing of its door class members.

Fig. 4.3.5a: UML Class Composition

 32

Recursive composition may also be used. In Fig. 4.3.5b (Ambler, 2004) a building

is made up of one or more rooms, and a room may in turn be composed of one or

more smaller rooms.

Fig. 4.3.5b: Recursive Composition

4.3.6 Dependency

A dependency relationship suggests that one class (the source) needs the services

or functionality of another class (the target). The source has no ownership or

control over of the target, which need not even know about the relationship. In

Fig. 4.3.6 (Ambler, 2004) the flight simulator class needs input from the joystick

class, but the objects of the joystick class can function fully without knowing

about the simulator. It is sometimes said that the source class uses the target.

Dependencies are the least formal of UML associations and are often too broad in

meaning to explain the interaction between two classes, and should thus be used

sparingly. Vernon suggests that the association relationship is more standard for

class interactions not covered by the other UML relationship types (2004).

Fig. 4.3.6: UML Class Dependency

 33

4.4 Object Behaviour Models

There are two types of UML object behaviour models. The first is the UML

interaction or sequence diagram, and the second is the UML state diagram.

The objective of both of these modelling techniques is to demonstrate the dynamic

behaviour of the system, or the sequence of events that take place to achieve the

system’s various functions. The process involved in developing the object

behaviour models is as follows [8]:

• Evaluate use-cases to determine the sequence of system interactions

• Identify the events that sequence the system interaction and relate them to

specific objects or components of the system

• Create an interaction diagram for each use-case

• Build a state diagram for important parts of the system

• Object-Oriented Analysis (State and Interaction Diagrams), James Gain

4.4.1 UML Sequence Diagram

A UML sequence diagram is used to model the passing of messages and

information that occur during a use-case. As the name suggests a UML sequence

diagram shows the sequential logic of a use-case via the ordering of the messages

on the diagram [2]. An example sequence diagram is shown in Fig 4.4.1 (Ambler,

2004) which models a student enrolling for a seminar. A message is depicted as a

horizontal arrow, pointing in the direction of the flow of information, with a label

describing the message being passed. A flow of information in response or reply

to a message is indicated by a dashed arrow. The boxes at the top of the diagram

depict the actors in the system. The dashed lines hanging from them are the object

lifelines, which depict the lifetime of the object in the interaction being modelled.

The long thin boxes on top of the lifelines are object activation boxes, and indicate

that an object is undertaking some processing task [2].

 34

The sequence of events when a student enrols for a seminar is as follows:

• The student attempts to enrol for a seminar

• The seminar enrolment system queries the course registration system to

determine whether the student is eligible to attend the seminar

• The course registration system requests seminar from the student which is

sent as a reply

• The course registration system then replies to the eligibility request from

the seminar system

• The seminar system replies to the enrolment request from the student

Fig. 4.4.1: Example UML Sequence Diagram

4.4.2 UML State Diagram

State diagrams or state machine diagrams are used to model the behaviour of

complex objects or classes. These objects may have various states associated with

them representing the stage of execution that the system is in. A state diagram

models the various states of the system and the transitions between them. It

depicts the events that cause each transition to occur and the actions that are taken

when a transition occurs [2].

Fig. 4.4.2 (Ambler 2004) shows an example state diagram. States are represented

by the boxes with curved edges. The initial state of the object is indicated by a

black circle, and the final state by a bordered circle [2]. Transitions are

represented by arrows leading from one state to another, or back to the same state.

 35

A transition label has the format event [guard]/method list [2]. The mandatory

event label indicates the event that triggers the transition. The optional guard field

indicates a condition that must be true for the transition to take place. A list of

method invocations may be included if relevant [2]. The methods invoked while

within a particular state may also be triggered by events. In Fig.4.4.2, the

logSize() method is invoked on entry to the open for enrolment state. In the full

state the enrol student event triggers the invocation of the addToWaitingList()

method. The syntax for state method invocations is the same as for transitions,

except the method list is mandatory and the event is option [2].

Fig. 4.4.2: Example State Diagram

 36

CHAPTER 5

PROJECT PLAN

This chapter outlines the major functions that the software must achieve and

examine the various design issues involved. It goes on to split the software

functionality into a set of modules, and outlines what each of these modules should

do in relation to the rest of the system.

5.1 Introduction

5.1.1 Major Software Functions

The functional requirements of the ASM simulator software are outlined below. The

simulator should:

• Provide an easy to use, intuitive graphical user interface (GUI).

• Allow ASM components to be inserted into a workspace and connected

together in order to construct an ASM diagram.

• Verify the correctness of a constructed ASM.

• Run a verified ASM, allowing a user to stimulate inputs and observe the

changes in outputs as the simulator runs.

• Step through an ASM element by element and observe what changes occur

at each level of machine.

• Save and retrieve constructed ASM’s to hard disk or other storage.

5.1.2 Performance and Behaviour Issues

It may take students a number of attempts to construct a correct ASM. Thus it

should take a few seconds at most to verify or run an ASM on a University of

Cape Town DC or white lab computer.

The simulator must always verify the correctness of an ASM accurately. If an

ASM has not been constructed correctly the simulator must recognise the error.

This is to ensure that the simulator achieve its primary purpose of teaching

students how ASM’s work.

 37

5.1.3 Logistic and Technical Constraints

The major constraints or issues of concern of this project are:

• The programmer’s lack of experience designing graphical user interfaces.

• The strict time constraints due to the deadline of 23 October 2006.

5.2 Project Estimates

5.2.1 Effort / Difficulty

The design phase of the thesis should be relatively easy. Writing the ASM class

code should not present much difficulty either. However implementing the

graphical user interface will be a more difficult challenge and will require far

greater effort considering the lack of experience in this area.

5.2.2 Time Estimate

The project has been divided into five phases. The initial phase comprises the

project plan. The second phase consists of the literature review and software

design, and the third phase the prototyping of the ASM classes. The fourth phase

will entail developing the GUI and integrating it with the ASM model. The final

phase will be used for completion of the thesis report and final testing of the

software.

5.3 Project Schedule

5.3.1 Project Task Set

The project task set and phases are set out in table 4.3.1.

Timing Task Phase

20 Aug – 24 Aug Project Plan 1

25 Aug – 31 Aug Lit Review and Design 2

01 Sep – 14 Sep ASM Prototype 3

15 Sep – 16 Oct GUI Development 4

17 Oct – 22 Oct Report and Testing 5

Table 5.3.1: Task Phases

 38

5.3.2 Functional Decomposition

The system’s functional composition is broken down into modules in Fig. 5.3.2

Fig. 5.3.2: System Decomposition

The functionality of each of the system modules is laid out in Table 5.3.3.

Module Functions

Variable

 Input Associate with decision box; Assert / deassert

 Output/Register Associate with State or Conditional Output

Element Connect to other element

 State Box Update output / registers

 Decision Box Determine exit path

 Conditional Output Update output / registers

Menus

 Help menu Display Program Help

 File menu New ASM; Save ASM; Load ASM; Close ASM

 Tools menu Verify machine; Run machine; Step Machine; Suspend Execution; Reset Machine

Toolbars Add element to ASM space; Add variable to IO space; verify, run and step ASM;

ASM diagram Add element

IO workspace Add variable

Table 5.3.3: Module Functionality

State

Box

Decision

Box

Conditional

Output

 Toolbars Menus Elements Inputs, Outputs

 Registers

 ASM
 GUI

Simulator

 ASM

 Diagram

 IO

 Work

 Space

 39

CHAPTER 6

SOFTWARE DESIGN

The first step of the software design process consists of specifying the system use-

case models. From these models, Class-Responsibility-Collaborator or CRC cards

are derived. A UML class relationship model is then developed directly from

these CRC cards. Following this, the system algorithm is modelled using object

behaviour models (UML interaction and state diagrams). Finally a code skeleton

can be drawn up, which is used to build a system prototype.

6.1 Use-Case Specifications

The various system use-cases are developed in this section. Each use-case

specification includes:

• A use-case identifier.

• A brief description of the use case.

• A list of actors involved in the use case.

• The use-case diagram itself.

• A more detailed description of the basic flow of the use-case.

• Possible alternative flows of the use-case.

• Use-case pre-conditions and post-conditions.

6.1.1 Place Element Use-Case

Identifier

The “place element” use-case is assigned identifier UC1.

Brief Description

In this use-case the user wishes to place an element of a particular type on the

ASM diagram. Once the type of element is selected, the user can place the

element on the ASM diagram in a desired position.

Actors

The actors involved in this use case are the user, the element toolbar, and the

element itself.

 40

Fig. 6.1.1: Place Element Use-Case – UC1

Basic Flow

i. The user left clicks on an element icon in the element toolbar, changing the

mouse to an element placement cursor and switching the system to placement

mode.

ii. The user releases the mouse button, and moves the cursor onto the ASM

diagram.

iii. The user clicks the left mouse button. If the cursor is positioned in an area of the

diagram that does not infringe on any elements already part of the ASM, the

new element is placed in that area.

iv. The system remains in placement mode allowing the user to place another

element of the same type, or right click to return the system to idle mode, ending

the use-case.

Alternative Flow - User Cancels Placement

i. The user left clicks on an element icon as before.

ii. The user presses the right mouse button before placing the element, canceling

placement and returning the system to idle mode. This ends the use-case

prematurely.

 41

Alternative Flow - User Initiates another Use-case

i. The user left clicks on an element icon as before.

ii. The user initiates a new “place element” (UC1) use-case. This ends the in

progress UC1 use-case prematurely. The use-case may also be suspended

temporarily by an “add variable” (UC4) or “edit variable” (UC5) use-case. Once

the UC4 or UC5 use-case completes the suspended “place element” use-case

resumes.

Preconditions

The system must be in idle, connecting, select or placement mode when the use-

case begins. If the user initiates a placement while a “connect elements” (UC3) or

“place element” (UC1) use-case is currently underway, the in progress use-case is

aborted.

Post-conditions

Once the use-case ends the system remains in placement mode until the user

presses the right mouse button to enter idle mode.

6.1.2 Edit Element Parameters Use-Case

Identifier

The “edit element parameters” use-case is assigned identifier UC2.

Brief Description

The user wishes to edit one of the parameters of an element on the ASM diagram.

The name of a state may be changed or variables from the active variable list may

be associated with the element.

Actors

The actors involved in this use case are the user, the element being edited and the

active variable list.

 42

Fig. 6.1.2: Edit Element Parameters – UC2

Basic Flow

i. The user double clicks on an element on the ASM diagram with the left mouse

button.

ii. An edit element parameters dialog box displays. This dialog shows a list of the

variables which can be associated with this particular element. If the element

selected is a state box the dialog contains a change name field.

iii. The user selects which variables to associate with the element, and gives the

element a name if it is a state.

iv. If a register variable is chosen to associate with the element, the user specifies

what value to move to the register when control passes to the element. If an

invalid value is given the default value of zero is assigned.

v. The user presses the “ok” button ending the use-case.

Alternative Flow – Vector Decision Box

i. The user double clicks on a vector decision box.

ii. The dialog shown has a list of vector inputs currently active as well as their

respective lengths. The user selects a vector input of length ‘n’ to associate with

the vector decision box. If the vector decision box currently outgoing

connections that exceed 2n in number, the user is warned that making the

association will cause the decision box to lose all its outgoing connections. The

user can then choose whether or not to associate the vector decision box with the

selected input.

 43

Preconditions

The system must be in idle or select mode to initiate an “edit element parameters”

use-case.

Post-conditions

Once the use-case ends the system returns to idle mode.

6.1.3 Connect Elements Use-Case

Identifier

The “connect elements” use-case is assigned identifier UC3.

Brief Description

The goal of the use-case is to connect two ASM elements on the ASM diagram

together. The user wishes to connect the exit path of one ASM element to the

entry path of another. The entry path of a conditional output box can only be

connected to the exit path of a decision box. If the user attempts to connect any

other element to the entry of a conditional output box, the connection will not be

allowed.

Actors

The actors involved in this use case are the user and the two elements being

connected.

User

Connect Elements

First element

ASM Diagram

ASM System

Second element

Fig. 6.1.3: Connect Elements Use-Case – UC3

 44

Basic Flow

i. The user right clicks on an element on the ASM diagram, changing the mouse to

a connection cursor and switching the system to connecting mode.

ii. The user can either click in empty space on the ASM diagram, or on another

element.

a. If the user left clicks on an empty area of the ASM diagram while in

connecting mode, a connecting line is drawn from the last connecting point

to the new point selected. Note that the first connecting line drawn from an

element begins at the exit point of the originating element. After drawing the

connecting line the system stays in connecting mode, the use-case flow of

control returns to step (ii) above.

b. If the user left clicks on a second element the system draws a connecting line

to the new element and makes the connection if it is valid. A valid

connection results in the system returning to idle mode and the use-case

ends. An attempt to make an invalid connection results in the display of an

error message, and the system remains in connection mode.

Alternative Flow – Connecting a Decision Box

i. The user right clicks on a vector decision box.

ii. If no vector input has yet been specified for the decision box, or if the input has

no length specified yet, no connections may be made from the decision box.

When the user connects the output of the vector decision box to another

element, the user is prompted to choose the value of the input vector that will

result in that decision path being chosen during the execution of the ASM.

 45

Alternative Flow – Connection Already Exists

i. The user right clicks on an element as before, but this time the element already

has a connection to another element.

ii. If the element is a vector decision box, the user can make up to 2n connections

from the element, where n is the length of the vector input associated with the

decision box. If the element is a state or conditional output, or if the decision

box has reached its maximum number of connections allowed, then the existing

connection(s) is (are) deleted (after warning the user that making a new

connection will do so). A new connection use-case then begins.

Alternative Flow - User Cancels Connection

i. The user right clicks on an element as before.

ii. The user may cancel the connection at any time by right clicking, returning the

system to idle mode and deleting all connecting lines drawn during the use-case.

Preconditions

The system must be in idle mode to initiate a “connect element” use-case.

Post-conditions

Once the use-case ends the system returns to idle mode.

6.1.4 Select Element Use-Case

Identifier

The “select elements” use-case is assigned identifier UC4.

Brief Description

The goal of the use-case is to either remove an element from the ASM diagram, or

move it to a new position. If the element is deleted, all connections associated

with the element are lost on deletion. Once an element is selected, moving it is

effectively the same as placing it (UC1).

Actors

The actors involved in this use case are the user, the element and the ASM

diagram.

 46

Fig. 6.1.4: Select Element Use-Case – UC4

Basic Flow

i. The user left clicks an element on the ASM diagram activating select mode.

This highlights the selected element.

ii. The user has various options from this stage.

iii. If the user left clicks on empty space on the ASM diagram the element is moved

to that position.

iv. If the user presses delete, the deletion must be confirmed, then the element is

deleted permanently along with all of its connections and associations with

active variables.

v. If the click the right mouse button the selection is cancelled.

vi. This ends the use case.

 47

Alternative Flow – User Starts another Use-Case

i. The user selects an element on the ASM diagram.

ii. The user starts a new use case. The in progress use-case is either aborted or

suspended depending on what type of use-case pre-empts it.

iii. If the user starts a “place element” (UC1), “edit element” (UC2), any ASM

simulation use-case (UC8 to UC10) or file use-case (UC11 to UC13) the in

progress use-case is aborted.

iv. If the user starts any other valid use case, the in progress use-case is suspended.

Preconditions

The system must be in idle mode to initiate a “delete element” use-case.

Post-conditions

Once the use-case ends the system returns to idle mode.

6.1.5 Add Variable Use-Case

Identifier

The “add variable” use-case is assigned identifier UC5.

Brief Description

In this use-case the user wishes to add a variable of a particular type from the

variable toolbar to the active variable list. If the variable selected is a vector input,

the user will be prompted to specify the length of the vector.

Actors

The actors for this use case are the user, the “add variable” dialog and the active

variable list.

 48

Fig. 6.1.5: Add Variable Use-Case – UC5

Basic Flow

i. The user left clicks on a variable type on the variable toolbar.

ii. The “add variable” dialog box opens. The user enters a unique name for the

variable and if the variable is of type “input vector” the user also enters an

integer length between 1 and 4 for the vector.

iii. The user presses enter or the “ok” button of the dialog. The active variable list is

then updated with the new variable information and the use-case ends.

Alternative Flow – Invalid Variable Parameter Given

i. The user left clicks on a variable type and the “add variable” dialog opens as

before.

ii. If the user does not enter a name for the variable, or the name is not unique, an

error message displays and the user is prompted to re-enter the name. If the

length of a vector input is invalid an error message is displayed and a default

length of 1 is used.

 49

Preconditions

The system may be in idle mode, connecting mode, select mode or placement

mode to initiate an “add variable” use-case.

Post-conditions

Once the use-case ends the system returns to idle mode.

6.1.6 Edit Variable Use-Case

Identifier

The “edit variable” use-case is assigned identifier UC6.

Brief Description

The user’s objective in this use case is to change one of a list of parameters in the

active variable list. An appropriate “variable edit” dialog box will allow the user

to make the desired changes. The user can change a variable name, stimulate an

input variable, or change the value of a vector input.

Actors

The actors in this use case are the user and the active variable list.

Fig. 6.1.6: Edit Variable Parameters Use-Case – UC6

 50

Basic Flow – Change Name

i. The user left clicks on the “name” field of a particular variable in the active

variable list.

ii. An “edit variable name” dialog displays. The user enters a new name for the

variable and presses the ok button. NB if an invalid name is entered the user is

prompted to re-enter (see alternative flow of UC4). This ends the use-case.

Basic Flow – Stimulate Variable

i. The user left clicks on the “stimulate variable” field of a particular variable in

the active variable list.

ii. The variable value is inverted. This ends the use-case.

Basic Flow – Change Vector Value

i. The user left clicks on the “change value” field of an input vector variable in the

active variable list.

ii. A “set new vector value” dialog is displayed allowing a new value for the vector

to be entered. The value must be between 0 and 2
n
 where n is the length of the

vector. If the user attempts to enter an invalid value an error message is

displayed and the value does not change. This ends the use-case.

Preconditions

The system may be in idle mode, connecting mode, or placement mode to initiate

an “Edit Variable” use-case.

Post-conditions

Once the use-case ends the system returns to the mode it was in prior to the

initiation of the use-case.

 51

6.1.7 Delete Variable Use-Case

Identifier

The “edit variable” use-case is assigned identifier UC7.

Brief Description

The user’s objective in this use case is to delete one of the variables in the active

variable list. The variable is removed from the list of associated variables of any

elements that it has been associated with. If the variable is a vector input

associated with a vector decision box, then that decision box loses its connections.

Actors

The actors in this use case are the user and the active variable list.

User

Delete Variable Active Variable List

Active Variable List

ASM System

VariableDeassociate

Element

Fig. 6.1.7: Delete Variable Use-Case – UC7

 52

Basic Flow

i. The user right clicks on a variable entry in the active variable list.

ii. The user is prompted to confirm that the variable will be deleted. The user may

choose “yes” or “no”

iii. If the user chooses “yes” the variable is removed from the variable list, and all

associations with elements are deleted. If the variable was associated with any

vector decision boxes, those boxes lose their connections.

iv. If the user chooses “no” the use-case is aborted.

v. This ends the use case.

Preconditions

The system may be in idle mode, connecting mode, placement mode or select

mode to initiate this use-case.

Post-conditions

Once the use-case ends the system returns to the mode it was in prior to the

initiation of the use-case.

6.1.8 Run Machine Use-Case

Identifier

The “run machine” use-case is assigned identifier UC8.

Brief Description

The goal of the use-case is to simulate the running of the ASM constructed on the

diagram. When the machine is simulated by the ASM system, an internal clock is

automatically generated by the system. The user may stimulate inputs and observe

outputs as the machine runs.

Actors

The actors of this use case are the user and the ASM simulator.

 53

User

Run Machine

ASM Simulator

ASM toolbar

ASM System

Fig. 6.1.8: Run Machine Use-Case – UC8

Basic Flow

i. The user left clicks on either the “run machine” icon of the ASM toolbar or the

equivalent option in the machine menu.

ii. The system simulates the ASM using the run machine algorithm, clocked by the

internal system clock. The user may direct the flow of the machine by

stimulating inputs and may observe outputs changing on the active variable list.

iii. The user stops the simulation using the “stop machine” icon on the ASM toolbar

or the equivalent option on the machine menu. This ends the use-case.

Alternative Flow – Elements Not Connected

i. The user selects “run machine” from the toolbar or machine menu.

ii. The system detects that some elements have unconnected exit or entry paths and

warns the user.

iii. The user may either abort the simulation and end the use-case or run the

partially connected machine as is.

Alternative Flow – Initial State Not Specified

i. The user selects “run machine” from the toolbar or machine menu.

ii. The system recognizes that the initial state has not been specified, displays an

appropriate error message and aborts the simulation.

iii. The use-case ends.

 54

Preconditions

The system must be in idle or suspended mode to initiate the “run machine” use-

case.

Post-conditions

Once the use-case ends the system is in suspended mode.

6.1.9 Step Machine Use-Case

Identifier

The “step machine” use-case is assigned identifier UC9.

Brief Description

The goal of the use-case is to step a suspended ASM simulation forward one clock

cycle. A simulation can be suspended by stopping a running ASM (UC8) or by a

“step machine” (UC9) use-case ending.

Actors

The actors in UC9 are the user and the ASM simulator.

User

Step Machine

ASM Simulator

ASM toolbar

ASM System

Fig. 6.1.9: Step Machine Use-Case – UC9

 55

Basic Flow

i. The user left clicks on either the “step machine” icon of the ASM toolbar or the

equivalent option in the machine menu.

ii. The system simulator moves the execution of the ASM forward one step using

the run machine algorithm, effectively clocking the system once.

iii. Once the data-path routines have been processed for that clock cycle the

simulator enters the suspended state. This ends the use-case.

Preconditions

The system must be in idle or suspended mode to initiate the “run machine” use-

case.

Post-conditions

Once the use-case ends the system is in suspended mode.

6.1.10 Reset Machine Use-Case

Identifier

The “reset machine” use-case is assigned identifier UC10.

Brief Description

In this use case the user resets an ASM simulation which is either running

currently or whose execution has been stopped or suspended. Resetting the ASM

returns the system to idle mode.

Actors

The actors in UC10 are the user and the ASM simulator.

 56

User

Reset Machine

ASM Simulator

ASM toolbar

ASM System

Fig. 6.1.10: Reset Machine Use-Case – UC10

Basic Flow

i. The user left clicks on either the “reset machine” icon of the ASM toolbar or the

equivalent option in the machine menu.

ii. The system simulator shuts down, returning the ASM system to idle mode. This

ends the use case.

Preconditions

The system must be in running or suspended mode to initiate the “reset machine”

use-case.

Post-conditions

Once the use-case ends the system is in idle mode.

6.1.11 New ASM Use-Case

Identifier

The “new ASM” use-case is assigned identifier UC11.

Brief Description

In this use case the ASM diagram and active variable list are cleared, allocated

memory is freed up and a new ASM diagram workspace is created.

Actors

The actors involved are the user, the active variable list, and the ASM diagram.

 57

Fig. 6.1.11: New ASM Diagram Use-Case

Basic Flow

i. The user left clicks on the new ASM diagram icon on the ASM toolbar or

selects the equivalent option from the file menu.

ii. If the current ASM diagram has not been saved in permanent storage the user is

warned that creating a new ASM will destroy the current ASM.

iii. The user decides to save the current ASM, cancel the new ASM operation, or

abandon the current ASM.

iv. If the user opts to save or abandon the current ASM, a new ASM workspace is

created with a blank ASM diagram, active variable list and newly initialised

local variables.

Preconditions

The system must not be in the running state to create a new ASM.

Post-conditions

Once the use-case ends the system is in the idle state.

 58

6.1.12 Save ASM Use-Case

Identifier

The “save ASM” use-case is assigned identifier UC12.

Brief Description

The goal of UC12 is to save the current ASM in permanent memory. The file

storage system captures the data associated with the current ASM diagram and

active variable list and stores it in a file in permanent storage for later retrieval.

Actors

The actors of UC12 are the user, file system, ASM diagram and active variable

list.

User

Save ASM ASM diagram

ASM toolbar

ASM System

Active Variable List

File Storage System

Save data

File

File System

Fig. 6.1.12: Save ASM Diagram Use-Case – UC12

 59

Basic Flow

i. The user left clicks on the save ASM diagram icon on the ASM toolbar or

selects the equivalent option from the file menu.

ii. The user is then prompted in a “file save” dialog to provide a file name and

directory location to save the ASM save file.

iii. The user may overwrite a previously saved file if desired but must first give

confirmation that it is the intended action.

iv. Once the user has provided a file name and pressed the “ok” button the file

storage system saves the data associated with the ASM diagram to file and ends

the use case.

Alternative Flow – user cancels save

i. The user selects the save ASM diagram icon as before.

ii. Whilst within the “file save” dialog the user cancels the save aborting the use-

case.

Alternative Flow – user does not enter filename

i. The user selects the save ASM diagram icon as before.

ii. The user attempts to save the file without providing a file name, resulting in an

error message being shown and the save dialog re-displaying. The use case will

end only when the user supplies a valid filename or cancels the use case.

Preconditions

The system must be in idle, connecting or placement mode to save the ASM to

file. However, if the system is in connecting or placement mode, the connection or

placement in progress is suspended and will not be saved to file.

Post-conditions

Once the use-case ends the system returns to the mode it was previously in.

 60

6.1.13 Open ASM Use-Case

Identifier

The “open ASM” use-case is assigned identifier UC13.

Brief Description

In this use case the user wishes to retrieve a previously saved ASM diagram with

its associated active variable list from file. The local variables, elements and

connections of the ASM diagram as they were saved in permanent storage are all

retrieved by the file retrieval system.

Actors

The actors of UC13 are the user, ASM diagram, active variable list and file

system.

User

Open ASM ASM diagram

ASM toolbar

ASM System

Active Variable List

File Retrieval System

Retrieve data

File

File System

Fig. 6.1.13: Open ASM Diagram Use-Case – UC13

 61

Basic Flow

i. The user left clicks on the open ASM diagram icon on the ASM toolbar or

selects the equivalent option from the file menu.

ii. The user is then prompted in a “file open” dialog to select the ASM file to open.

iii. Once the user has selected a valid file and pressed the “ok” button the file

retrieval system recovers the data associated with the ASM diagram from file.

The ASM diagram and active variable data is entered into the current ASM

workspace and all local variables from the retrieved ASM workspace are

restored. This ends the use-case

Preconditions

The system may be in idle, connecting or placement mode when the use-case

begins. However, if the system is in connecting or placement mode, the

connection or placement is abandoned when the new ASM workspace is opened.

Post-conditions

Once the use-case ends the new ASM system is in idle mode.

6.1.14 Help Use-Case

Identifier

The “Help” use-case is assigned identifier UC14.

Brief Description

The goal of UC14 is to view help information concerning how to use the program.

The user is given a choice to view either a dialog box giving basic instructions on

how the program works or an about dialog displaying information program

version, when it was written and so forth.

Actors

The actors involved in UC14 are the user and the help dialog.

 62

Fig. 6.1.14: Help Use-Case – UC14

Basic Flow

i. The user left clicks the help / about icon on the ASM toolbar or the equivalent

help menu item.

ii. The help or about dialog is displayed.

iii. The user presses the “ok” or close button ending the use-case.

Preconditions

The system must be in idle, connecting or placement mode to enter this use case.

Post-conditions

Once the use-case ends the system returns to the mode it was in previously.

6.1.15 Set ASM Properties Use-Case

Identifier

The “set ASM properties” use-case is assigned identifier UC15.

Brief Description

The goal of this use-case is to set the initial state and clock speed of the ASM.

When the user specifies the initial state the system does no checks to verify that

the choice of state makes sense, but some indication of whether the ASM states

are connected logically is given at run time (see UC8 “run machine”). The user

also chooses from a range of clock speeds available for clocking the execution of

the ASM simulator. If no clock speed has been specified at run time, a default is

used.

 63

Actors

The actors involved in the use-case are the user and the ASM properties dialog.

User

Set ASM properties

ASM toolbar

ASM System

ASM properties dialog

Fig. 6.1.15: Set ASM Properties Use-Case – UC15

Basic Flow

i. The user left clicks the “set ASM properties” icon on the ASM toolbar or selects

the equivalent machine menu option.

ii. A dialog showing a list of the states currently on the ASM diagram and a clock

speed spin control is shown for selection.

iii. The user selects a state and clock speed then clicks the “ok” button.

iv. The initial state and clock speed parameters of the system are saved. This ends

the use case.

Alternative Flow – user cancels use-case

i. The user selects the “set ASM properties state” icon as before.

ii. From the “set ASM properties” dialog the user left clicks “cancel” aborting the

use-case.

Alternative Flow – user does not select state

i. The user selects the “set ASM properties state” icon as before.

ii. From the “set ASM properties” dialog the user left clicks “ok” without selecting

an initial state. The use case is aborted and no state is set as the initial.

 64

Preconditions

The system may be in idle, connecting or placement mode to enter this use case.

Post-conditions

Once the use-case ends the system returns to its previous mode.

6.2 Class-Responsibility-Collaborator Cards

The CRC cards derived directly from the use-case specifications for the ASM

simulator system are shown in Tables 6.2a to 6.2h that follow.

Class Name: ASM Simulator

Class Type: Device (simulator)

Class Characteristics: tangible, aggregate, sequential, transient

Responsibilities Collaborators

Attributes ASM Diagram

diagram ASM Toolbar

 System Clock

Methods

run simulation ()

step simulation ()

reset simulation ()

stop simulation ()

Table 6.2a: ASM Simulator CRC Card

 65

Class Name: ASM Diagram

Class Type: Object (diagram)

Class Characteristics: tangible, aggregate, concurrent, temporary

Responsibilities Collaborators

Attributes ASM Dialogs

elements array ASM Toolbar

first element Element

current element ASM Simulator

connections array

Methods

place element ()

delete element ()

connect element ()

edit element ()

Table 6.2b: ASM Diagram CRC card

Class Name: ASM Toolbar

Class Type: Interaction

Class Characteristics: abstract, atomic, concurrent, temporary

Responsibilities Collaborators

Attributes ASM Simulator

element select buttons ASM Dialogs

file toolbar buttons ASM Diagram

machine toolbar buttons Active Variable List

add variable buttons

Methods

button pressed ()

Table 6.2c: ASM Toolbar CRC card

 66

Class Name: Active Variables List

Class Type: Interaction

Class Characteristics: abstract, aggregate, concurrent, temporary

Responsibilities Collaborators

Attributes Variable

variableList ASM Dialogs

Methods

add variable ()

edit variable ()

delete variable ()

Table 6.2d: Active Variables List CRC card

Class Name: ASM Dialogs

Class Type: Interaction

Class Characteristics: abstract, atomic, sequential, transient

Responsibilities Collaborators

Attributes File System

file open and save dialogs ASM Diagram

add element dialog ASM Toolbar

add variable dialog Active Variable List

edit element dialog

edit variable dialog

error and warning dialogs

about and help dialogs

Methods

show dialog

Table 6.2e: ASM Dialogs CRC card

 67

Class Name: Element

Class Type: Object

Class Characteristics: tangible, atomic, sequential, transient

Responsibilities Collaborators

Attributes ASM Diagram

type Active Variables List

variablesArray Variable

next element

vector length (if vector)

Methods

connect to next

Table 6.2f: Element CRC card

Class Name: Variable

Class Type: Object

Class Characteristics: tangible, atomic, sequential, transient

Responsibilities Collaborators

Attributes Active Variable List

name Element

type

value

length

Table 6.2g: Variable CRC card

 68

Class Name: File System

Class Type: External entity

Class Characteristics: abstract, atomic, sequential, transient

Responsibilities Collaborators

Attributes ASM Dialogs

File Retrieval System

File Storage System

Methods

save ASM

open ASM

Table 6.2h: File System CRC card

 69

6.3 Class Relationship Model

Fig. 6.3 shows the class relationship model for the ASM system.

ASM Simulator System

+run simulation()

+step simulation()

+reset simulation()

+stop simulation()

-diagram : ASM diagram

ASM simulator

+place element()

+connect element()

+edit element()

+delete element()

-elements : elementArray

-first : Element

-current : Element

-connections : connectionArray

ASM diagram

+button pressed()

-element buttons : tool button

-file buttons : tool button

-machine buttons : tool button

-variable buttons : tool button

ASM toolbar

+add variable()

+edit variable()

+delete variable()

-variables : variableArray

Active Variables List

+show dialog()

-file open : Dialog

-file save : Dialog

-add element : Dialog

-add variable : Dialog

-edit element : Dialog

-edit variable : Dialog

-error : Dialog

-warning : Dialog

-about : Dialog

-help : Dialog

ASM Dialogs

+connect()

-type : int

-variables : variableArray

-next : Element

-length : int

Element

-name : String

-type : int

-value : int

-length : int

Variable
+save ASM()

+load ASM()

-File Retrieval System

-File Storage System

File System

System Clock

1

1

1

1

1 1

Is clocked by

Is sequenced by

1 1

Place element

1

*

1

*

1

*

1

*

1

*

*

1

2
1

1

1

Place

variable
Open

Dialog
Open

Dialog

Open

Dialog

Access

Files

Fig. 6.3: ASM Simulator Object Relationship Model

 70

6.4 Object Behaviour Models

The object behaviour models are used to specify the dynamic behaviour of the

system. The two types of models used are sequence diagrams and UML state chart

diagrams.

6.4.1 Sequence Diagram

The system sequence diagrams are derived directly from the use-case scenarios.

The sequence diagrams are shown in Fig. 6.4.1a to 6.4.1h.

Fig. 6.4.1a: Place Element Sequence Diagram

Fig. 6.4.1b: Edit Element Sequence Diagram

 71

User ASM Diagram
Element

Array

Right click element
Add point to connection

Left click
Add point to connection

Left click element

Connect elements

Validate connection

Fig. 6.4.1c: Connect Element Sequence Diagram

Fig. 6.4.1d: Move Element Sequence Diagram

 72

Fig. 6.4.1e: Delete Element Sequence Diagram

Fig. 6.4.1f: Add Variable Sequence Diagram

 73

Fig. 6.4.1g: Edit Variable Parameters Sequence Diagram

Fig. 6.4.1h: Delete Variable Sequence Diagram

 74

Fig. 6.4.1i: Simulate Machine Sequence Diagram

The remaining file system use-cases are relatively trivial in their sequencing and

as such do not require sequence diagrams.

 75

6.4.2 State Chart Diagram

The UML state chart modelling the ASM simulation sequence is shown in Fig.

6.4.2. The simulation sequence is effectively the same whether clocked by internal

events or by the user manually stepping the machine.

Wait For Clock Event

Done [CurrentIsState] / Current = Next

Run Machine / Current = First

Process Current

Entry / update

variables

Exit / determine

next state

Done [!CurrentIsState] / Current = Next

ClockEvent

Suspend

Reset / Current = First

Fig. 6.4.2: ASM Simulator State Chart Diagram

 76

CHAPTER 7

SOFTWARE ACCEPTANCE TESTING

The project results are presented in this chapter in the form of software acceptance

testing. The test cases presented here examine each use-case specification to

determine whether the developed system meets the functional requirements

originally specified. After the test cases were developed, the software was tested

by 3
rd
 year electrical and computer engineers at UCT. The results of these tests are

also summarised in this chapter. The 3
rd
 year students that tested the system are

referred to as “users” in this section.

7.1 Test Case 1: Place Element

7.1.1 Test Case Number

The “place element” test case was assigned test case number TC1.

7.1.2 Description

The user should be able to place an element on the ASM diagram. This test case

corresponds to UC1.

7.1.3 Programmer’s evaluation

The implementation was successful

7.1.4 Users’ comments

The users were satisfied with the implementation. It was suggested that the

element toolbar positioned above the ASM diagram be moved to the side of the

ASM diagram for greater convenience in placing elements, and to separate tools

for placing an element from running the simulation or accessing the file system.

Users rejected the idea of changing the method of placing elements to a drag and

drop system. The current system allows multiple elements to be placed at once,

one after the other without returning to the element toolbar. A drag and drop

system would waste time unnecessarily.

7.1.5 Result

The element toolbar was eventually left in its position at the top of the screen to

prioritise changes that add functionality to the system.

 77

7.2 Test Case 2: Edit Element Parameters

7.2.1 Test Case Number

The “edit element parameters” test case was assigned test case number TC2.

7.2.2 Description

The user should be able to edit the name of a state and associate variables with an

element. This test case corresponds to UC2.

7.2.3 Programmer’s evaluation

The implementation was mostly successful. However, register operations were not

implemented due to time constraints. In the implementation, changing the length

of the input associated with a decision box results in only the exit paths that were

irrelevant to the new input being lost, rather than all exit paths as originally

planned in the use-case specification. The exit paths are deleted without

prompting the user.

7.2.4 Users’ comments

The users agreed that the implementation was successful.

7.2.5 Result

The changes mentioned in 7.2.3 were made to the use-case.

7.3 Test Case 3: Connect Elements

7.3.1 Test Case Number

The “connect elements” test case was assigned test case number TC3.

7.3.2 Description

The user should be able to connect two elements together. This test case

corresponds to UC3.

7.3.3 Programmer’s evaluation

The implementation was successful.

7.3.4 Users’ comments

The users agreed that the implementation was successful.

7.3.5 Result

No changes were made to the original use-case specification.

7.4 Test Case 4: Select Element

 78

7.4.1 Test Case Number

The “edit element parameters” test case was assigned test case number TC4.

7.4.2 Description

The user should be able to move and delete an element.

7.4.3 Programmer’s evaluation

The implementation was successful, with an amended method of operation (see

7.4.5).

7.4.4 Users’ comments

The users were satisfied with the implementation. A suggestion was made that it

would be more intuitive to allow users to drag and drop elements to move them

rather than left clicking twice.

7.4.5 Result

The drag and drop suggestion was discarded, mostly due to time constraints.

During implementation the select element was amended to operate as follows:

The user left clicks on an element to enable movement mode. The user then

moves the element by left clicking on an empty space on the diagram. If the user

right clicks the movement use-case is cancelled.

To delete an element the user left clicks on the delete toolbar item and an element

then left clicks on an element to delete. To cancel delete the user presses right

click

7.5 Test Case 5: Add Variable

7.5.1 Test Case Number

The “add variable” test case was assigned test case number TC5.

7.5.2 Description

The user should be able to add a variable to the active variable list, as in UC5.

7.5.3 Programmer’s evaluation

The implementation was successful.

7.5.4 Users’ comments

The users were satisfied with the implementation.

7.5.5 Result

No changes were made to the use-case specification.

 79

7.6 Test Case 6: Edit Variable

7.6.1 Test Case Number

The “edit variable” test case was assigned test case number TC6.

7.6.2 Description

The user should be able to edit a variable in the active variable list, as in UC6.

7.6.3 Programmer’s evaluation

When renaming variables, complications in updating element variable association

lists arose. The ability to change variable names was deemed to be a desirable but

unnecessary feature and so was discarded. Otherwise the implementation of this

use-case was a success.

7.6.4 Users’ comments

The users were satisfied with the implementation.

7.6.5 Result

The changes put forth in 7.6.3 were made to the use-case specification.

7.7 Test Case 7: Delete Variable

7.7.1 Test Case Number

The “delete variable” test case was assigned test case number TC7.

7.7.2 Description

The user should be able to delete a variable in the active variable list, as in UC7.

7.7.3 Programmer’s evaluation

This feature was regarded as being unnecessary and so was discarded. The user is

effectively unrestricted in the number of inputs and outputs available to add to the

active variables list. The user may add up to 100 variables, more than enough for

the purposes of this simulation package.

7.7.4 Users’ comments

The users agreed that the ability to delete variables was unimportant.

7.7.5 Result

This use-case was discarded.

 80

7.8 Test Case 8: Run Machine

7.8.1 Test Case Number

The “run machine” test case was assigned test case number TC8.

7.8.2 Description

The user should be able to run the ASM machine, clocked internally by the

system, as in UC8.

7.8.3 Programmer’s evaluation

This feature was regarded as being unnecessary and so was discarded. Given the

purpose of the simulation package, it would seem more important for the user to

be able to clock the machine manually and thus be allowed the time to view

outputs and determine what values to feed into the input manually.

7.8.4 Users’ comments

The users expressed that the run machine facility could be useful and should be

implemented in the future.

7.8.5 Result

The run machine use-case was listed for future development.

7.9 Test Case 9: Step Machine

7.9.1 Test Case Number

The “step machine” test case was assigned test case number TC9.

7.9.2 Description

The user should be able to step the ASM forward one clock cycle, as in UC9.

7.9.3 Programmer’s evaluation

The use-case was successful. It was decided during implementation to allow the

user to make changes to the ASM diagram (moving elements around, adding

elements, altering connections, adding variables etc) while the simulation is in the

“suspended” state. The correctness of the ASM diagram (whether all the elements

are connected together properly and whether the initial state is defined) is checked

on initialisation of each step use-case. Elements that disobey the ASM rules are

highlighted and an error messages shows.

 81

7.9.4 Users’ comments

The users suggested that if an attempt is made to step the machine without any

initial state specified, the “set initial state” dialog should appear for convenience

and save time. The users expressed that highlighting elements that disobey ASM

rules when the machine is stepped is a useful addition to the use-case.

7.9.5 Result

The users “set initial” suggestion was incorporated into the use-case.

7.10 Test Case 10: Reset Machine

7.10.1 Test Case Number

The “reset machine” test case was assigned test case number TC10.

7.10.2 Description

The user should be able to reset the ASM, as in UC10.

7.10.3 Programmer’s evaluation

The implementation was a success.

7.10.4 Users’ comments

The users were satisfied that the implementation works.

7.10.5 Result

The implementation of the use-case was as in the specification.

7.11 Test Case 11: Create New ASM Diagram

7.11.1 Test Case Number

The “create new diagram” test case was assigned test case number TC11.

7.11.2 Description

The user should be able to clear the current ASM diagram and create a new one,

as in UC11.

7.11.3 Programmer’s evaluation

The implementation was a success.

7.11.4 Users’ comments

The users were satisfied that the implementation works.

7.11.5 Result

The implementation of the use-case was as in the specification.

 82

7.12 Test Case 12: File System

7.12.1 Test Case Number

The “file system” test case was assigned number TC12.

7.12.2 Description

The user should be able to save the current ASM diagram to permanent storage,

and retrieve saved diagrams from storage as in UC12 and UC13.

7.12.3 Programmer’s evaluation

The implementation was incomplete due to unsolved bugs with the file retrieval

system.

7.12.4 Users’ comments

The users commented that being able to save and load work is an extremely

desirable feature, though not essential.

7.12.5 Result

The implementation of the use-case was listed for future development.

7.13 Test Case 14: Get Help

7.13.1 Test Case Number

The “get help” test case was assigned test case number TC13.

7.13.2 Description

The user should be able to view a readme file for the ASM, as in UC14.

7.13.3 Programmer’s evaluation

The implementation was a success.

7.13.4 Users’ comments

The users were satisfied that the implementation works.

7.13.5 Result

The implementation of the use-case was as in the specification.

7.14 Test Case 14: Set ASM Properties

7.14.1 Test Case Number

The “set ASM properties” test case was assigned number TC14.

 83

7.14.2 Description

The user should be able to set the ASM properties, as in UC15.

7.14.3 Programmer’s evaluation

Since the Run ASM use-case was discarded the clock speed feature became

obsolete. Thus the “set ASM properties” feature is used exclusively to set the

ASM initial state.

7.14.4 Users’ comments

The users were satisfied that the implementation works.

7.14.5 Result

Only the “set initial state” part of the use-case was implemented.

7.15 Test Case 15: Other Issues

7.15.1 Efficiency of Execution

The program executed efficiently on white lab and DC lab computers to the

satisfaction of both the programmer and users.

7.15.2 Ease of Use of Interface

The interface is sufficiently easy to use, however suggestions were made (outlined

in the previous test cases) to make the interface more intuitive and convenient.

 84

CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

A graphical user interface (GUI) allowing an ASM diagram to be built and

experimented with was successfully implemented. The system effectively verifies

the correctness of the ASM constructed on the diagram, in this way the rules of

ASM construction are successfully demonstrated. The user is also able to

associate elements of the ASM with inputs and outputs. The ASM diagram flow

of control can then be manipulated using the inputs. Changes in the outputs can be

observed to demonstrate the flow of control of the ASM. In this way the

simulation package achieves its primary goal of demonstrating ASM’s to afford

students a clear understanding of how they work.

The feature set of the final simulation package is rather limited, future

development of the software is certainly desirable to make it a more complete

package. Listed future developments at this stage are as follows:

• Allow the ASM diagram canvas to be resized and dynamically scrolled to

allow for larger ASM’s to be built.

• Allow window controls to be resized and moved with respect to each other

to customize the appearance of the interface to the user’s preference.

• Add state names to the diagram to correspond with standard ASM

convention.

• Add a list of elements and variables associated with each to the main

window for clarity.

• Implement register operations for states and conditional outputs for a more

complete simulation of ASM construction.

• Implement Boolean expressions of inputs for decision boxes.

• Allow the deleting of inputs and outputs.

• Provide a file system to allow diagrams to be saved and restored from disk.

• Develop an extension package to the simulator system that allows a

schematic of the digital logic for the system being modelled to be

generated directly from the ASM diagram.

 85

References

[1] Mano, M., M., & Kime, C., R., Logic and computer design fundamentals. 3
rd

ed. Upper Saddle River, N.J.:Pearson Education, 2004.

[2] Ambler, S., W., The object primer: Agile model driven development with

UML 2. 3
rd
 ed. Cambridge University Press, 2004.

[3] Comparison of Java and C++. Wikipedia, the Free Encyclopedia. [Online].

Available:

http://en.wikipedia.org/wiki/Comparison_of_Java_and_C%2B%2B

[19 October 2006]

[4] PIGUI. Wikipedia, the Free Encyclopedia. [Online]. Available:

http://en.wikipedia.org/wiki/PIGUI [19 October 2006]

[5] Object oriented languages: a comparison. Eifel Software webpage. [Online].

Available:

http://archive.eiffel.com/doc/manuals/technology/oo_comparison/page.html

[19 October 2006]

[6] Braem, F., © 2001-2002. wxWindows: Programming cross-platform GUI

applications in C++ [Online]. Avaliable: http://www.wxwindows.org/docs

[2 October 2006]

[7] Guthrie, W., 1995. An overview of portable GUI software. SIGCHI bulletin.

27(1):55-69.

[8] Gain, J., & Kelleher, J., 2004. Object-Oriented Analysis. CSC202S lecture

notes. University of Cape Town Computer Science Department.

[9] Rumbaugh J., Jacobson I., & Booch G., Unified Modeling Language

Reference Manual. Addison Wesley, 1997.

[10] Vernon V., © 2004. Understanding UML Class Relationships. Jubatus Corp.

[Online] Available: http://www.jubatus.com/publications/articles/ [10

October 2006]

