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Abstract

This thesis investigates the performance of the Cell Broadband Engine (Cell

BE) Architecture for executing a Polyphase Filter Bank algorithm, used for

efficient signal channelisation. The heterogeneous multi-core architecture

of the Cell BE is introduced and important considerations for developing

programs for the Cell BE are discussed. The Polyphase Filter Bank DFT

channeliser is discussed in depth, and the process of mapping this algorithm

onto the Cell BE processor architecture is shown. An evaluation of the

performance of the Polyphase Filter Bank algorithm on the Cell BE processor

is presented with results obtained from the Sony Playstation 3 and the IBM

Full System Simulator. The effect of the parameters of the algorithm on the

performance is investigated. The Cell BE processor is shown to be efficient

for some algorithms, and the factors that have both positive and negative

impact on its performance are presented. The current implementation of

the Cell BE processor has some important limitations for use in scientific

computation.
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Chapter 1

Introduction

This thesis investigates the performance benefits that can be achieved by the

use of the Cell Broadband Engine (Cell BE) Architecture for signal processing

applications, specifically in the area of radio astronomy. This introduction

will provide a background to the content of the thesis, as well as lay out the

objectives in some detail. Finally, an outline for the contents of the thesis

will be presented.

1.1 Background

1.1.1 Radio Astronomy

Interferometry is used in radio astronomy to enable radio wave signals

received simultaneously by multiple telescopes in an array to be combined.

This allows high resolution radio band signals to be obtained due to the large

effective size of the synthetic aperture formed by the multiple telescopes. The

received signals are passed through a correlator to compensate for the delay,

phase and amplitude variations from the different sources, after which they

are added to obtain a high resolution signal of complex visibilities.

Correlators are typically classed as either XF or FX type, with the XF

type correlator traditionally favoured for its lower complexity and lower data
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rate. More recently, the availability of inexpensive high performance proces-

sors have enabled the FX type correlator to become a more popular choice,

and successful results have been achieved with pure software implementa-

tions such as the DiFX software correlator [11] developed to run on the

Swinburne supercomputer. By first channelising the signal into frequency

bands, and then performing a cross-multiplication of each channel, the FX

correlator reduces the number of cross-multiplications that are needed in the

XF type correlator [2]. In a correlator design, an initial coarse channelisation

stage could be applied, which splits the data into a number of smaller band-

width channels. The total bandwidth is then reduced as only the channels

with frequencies of interest are channelised further into many fine bandwidth

channels for analysis.

The channelisation stage of the FX correlator has been performed by mak-

ing used of the Fast Fourier Transform (FFT) by Chikada et. al [7] in their

Digital FFT Spectro-Correlator, as well as by Romeny in the Very Long Base-

line Array (VLBA) [32]. The higher computational cost associated with the

FFT has been viewed as a disadvantage of the FX correlator, but Bunton [2]

has shown that a polyphase DFT filter bank is an efficient solution for per-

forming the channelisation of data in the initial stage of the FX correlator. By

using the polyphase filter bank implementation instead of the standard DFT,

the effect of narrowband components that cause a degradation in signal-to-

noise ratio during correlation is minimized [2]. Oversampling the data in

each channel will also reduce the degradation further [4], as well as allow

the channels produced during the initial course channelisation to be further

channelised to to obtain a higher frequency resolution [3]. The polyphase

filter bank algorithms are thus an important component of an efficient cor-

relator implementation, and have been identified as ideal for implementation

on the Cell BE due to the highly parallel nature of the algorithms.
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1.1.2 The Cell BE Processor

The Cell Broadband Engine Architecture has been designed and developed

by a consortium formed by Sony, Toshiba and IBM, know as STI. The Cell

BE processor, the first processor based on the Cell Broadband Engine Archi-

tecture, became commercially available in November 2006 with the release of

the Sony Playstation 3. The Cell BE consists of a central Power Processing

Element (PPE) based on the 64-bit PowerPC architecture, which is suited

to running control and operating system code, as well as eight Synergistic

Processing Elements (SPE) suited for compute intensive code. The nine

processor cores are connected to external memory via the high performance

Element Interconnect Bus (EIB).

The Cell BE is capable of high peak performance rates, and has a the-

oretical floating point processing rate of over 200 GigaFLOP/s (200 billion

floating point operations per second), compared to the traditional current

state-of-the-art processor running at just over 20 GigaFLOP/s [15]. Bench-

marks have shown that the Cell BE processor is particularly well suited to the

speedup of single precision floating point operations, as the performance of

the Fast Fourier Transform (FFT) has been shown to be faster than current

state-of-the-art processors by a factor of about 10 to 20 [8].

The advantage of using the Cell BE architecture as a platform for signal

processing is derived from the high computational density of the Synergistic

Processing elements, achieved through thread and data level parallelism, as

well as the multiple threads of hardware execution and the support for a

large number of concurrent memory accesses [15]. The power of the Cell BE

processor can be further extended by implementing the processor as a node

in a cluster computing environment [22].

3



Figure 1.1: The Cell BE Processor

1.2 Objectives

This thesis aims to implement the polyphase filter bank algorithms for sig-

nal channelisation on the Cell BE, and to evaluate the performance on this

architecture, drawing a comparison with current state-of-the-art traditional

multicore processors.

1.2.1 Implement Polyphase Filter Bank algorithms on

the Cell BE processor

The polyphase representations for critically sampled and over-sampled fil-

ter banks will be implemented in C code. These implementations will be

analysed and optimised to run on the Cell BE architecture. The process of

developing the code to run efficiently on the Cell BE processor will be de-

scribed in detail, including motivations for the methods used and a discussion

on general issues faced during development.
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1.2.2 Evaluate performance of the Cell BE for digital

signal processing applications

The performance of the polyphase filter bank algorithms will be carefully

measured and benchmarked against the same algorithms running on cur-

rently available multicore processors. The factors affecting performance will

be determined, and the features of the algorithms that enable performance

increases on the Cell BE will be identified. An overlying objective of this

thesis is to evaluate the potential performance of the Cell BE for compute

intensive signal processing applications, such as a full software correlator

implementation, as well as other algorithms used in radio astronomy. The

polyphase filter bank performance on the Cell BE will be evaluated using a

variety of signals and input parameters. The performance impact due to the

data representation will also be investigated.

1.2.3 Provide general guidance for Cell BE develop-

ment for signal processing applications

This thesis also aims to provide an overview of the procedure used to im-

plement signal processing algorithms on the Cell BE platform, describing in

detail the design decisions and the process of development and optimisation

of the code for the Cell BE.

1.3 Scope and Limitations

This thesis report investigates the implementation of a specific digital signal

processing algorithm, that of the polyphase filter bank, on the Cell Broad-

band Engine processor in the Sony Playstation 3. The mapping and parti-

tioning of the algorithm described is specific to the heterogeneous multicore

architecture of the Cell BE, and the optimisations are based on an analysis

of the currently available version of the Cell BE processor. The assumptions

and limitations of the algorithm will be discussed in the relevant sections of
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this report.

1.4 Document Outline

The thesis will be presented as follows:

Chapter 2 will introduce the Cell Broadband Engine Architecture. The

Cell BE processor will be presented and the main components of it will be

described in some detail. Performance specifications for the processor will

be provided. I will explore the features of the Cell BE processor that make

it a suitable candidate for high performance computing, and enable efficient

signal processing applications, focusing on the programming models that

support this type of algorithm. A brief introduction to the Sony Playstation

3 will describe the hardware that the implementation will be executed on.

Chapter 3 provides the relevant theory of multirate signal processing, along

with the mathematical development of filter banks and the polyphase repre-

sentation that affords an efficient practical implementation. The mathemat-

ical framework for polyphase filter banks will be described, specifically for

the cases of the critically sampled filter bank implementation, as well as the

oversampled filter bank implementation.

Chapter 4 presents the details of the approach taken in mapping the math-

ematical description of the algorithms for polyphase filter banks onto an ef-

ficient implementation executable on the Cell BE processor. The methods

used and design decisions will be discussed, and the process of development

and debugging on the Sony Playstation 3 console will also be described in

detail. The programming model used to implement the algorithms will be

explained and justified.

Chapter 5 presents the performance results obtained by measuring the ex-

ecution of the code on the Cell BE processor. The performance results are

6



compared and benchmarked, and all the parameters and specifications used

are discussed in detail. The details of the performance tests that are per-

formed will be discussed, as well as the relevant comparisons of performance

specifically for signal processing algorithms such as the polyphase filter bank

algorithms that will be used. This chapter will also predict and investigate

parameters affecting performance relating to the implementation of the al-

gorithm on the Cell BE.

Chapter 6 will conclude the thesis, providing a summary of the main results

obtained and an analysis of the relevance of the results. The evaluation of

the Cell BE as a platform for high performance signal processing applications

in radio astronomy, as well as other fields that make use of polyphase filter

bank theory, will be discussed. In this chapter I also discuss possible further

research that may build on this thesis and explore the use of the Cell BE for

a wider variety of signal processing algorithms.
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Chapter 2

The Cell Broadband Engine

2.1 Architectural Overview

The Cell Broadband Engine Architecture is designed as a heterogeneous

multi-core processor system. The Cell BE contains a Power Processing El-

ement (PPE) and a number of Synergistic Processing Elements (SPE) to

which the PPE can delegate computation.

2.1.1 The Power Processing Element

The Power Processing Element (PPE) of the Cell BE is a 64-bit processor

based on Power Architecture1. The PPE features a Reduced Instruction

Set (RISC) design, with in-order processing and support for VMX (AltiVec)

vector instructions. The datapath of the PPE allows for execution of two

threads simultaneously in hardware. In the Cell BE programming model, the

PPE is suited for control, task switching and operating system level support,

and it will typically be used to run the operating system. By making use

of dual-threading and virtualisation, the Cell BE is capable of running two

operating systems simultaneously; it is possible to run a Real-Time Operating

System (RTOS) concurrently with a standard operating system.

1Family of processors including the PowerPC and POWER processors
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Figure 2.1: The Cell BE Processor Board Layout [19]
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The PPE contains a coherent hierarchical cache, featuring an 512KB 8-way

set associative write-back L2 cache, with a cache-line size of 128 bits [6], as

well as a 32KB L1 cache for instructions and data.

2.1.2 The Synergistic Processing Elements

Each SPE is composed of a Synergistic Processing Unit (SPU), a local

memory store (LS) and a memory flow controller (MFC). The SPE design was

optimised for low area and low complexity [14]. Unlike modern processors,

the SPE does not implement a hardware cache, and all memory operations

are software controlled.

The SPE is a vector processor supporting Single Instruction Multiple Data

(SIMD) on a 128-bit wide data path. SIMD instructions are pipelined on the

SPU, which enables the SPE to execute a vector operation in a single clock

cycle. The SPE is designed for wide data-width vector processing, with no

separate support for scalar processing. The technique of scalar layering [14]

is used to perform efficient scalar operations on the wide data-path. The ar-

chitecture of the SPE is optimised for compute intensive code, and it contains

a large 128 element 128-bit wide register file.

The SPU is only able to address memory in its own LS, which is used

to store both instructions and data. The MFC controls the asynchronous

coherent Direct Memory Access (DMA) [19] to load and store data between

the local store and main memory, as well as mailboxes and signalling between

processors. The PPE is able to communicate with the MFC of a PPE through

MMIO registers.

To achieve high performance for compute intensive processing, the SPE

eliminates the overhead of load and store address translation by only address-

ing the local store. The SPE is able to achieve higher density due to lack

of hardware elements needed to implement and manage a hardware cache

and tags. Support for only in-order instruction issuing and elimination of

10



branch prediction logic provide further performance gains [17]. Instructions

and memory operations on the SPU are statically scheduled, which allows the

compiler to optimise code for the processor and achieve performance close to

the theoretical peak.

The architectural design of the Cell BE processor has enabled it to deliver

compute performance equivalent to that of a supercomputer for consumer

applications.
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Figure 2.2: Architecture of the Synergistic Processing Element

2.1.3 Memory

The high performance Element Interconnect Bus (EIB) consists of four

data rings that connect the PPE, SPEs, DRAM controller and the I/O Con-

trollers. The EIB is optimised to achieve speeds of over 300 gigabytes per sec-

ond, and a throughput of about 25.6 GB/s is typically achieved per SPU [26]

The memory interface is optimised for aligned quadword access, reducing

the complexity of the memory control as well as reducing latency [14]. This

means that all memory transfer source and destination addresses need to be

quadword aligned to optimise bus transfers. The software controlled mem-
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ory architecture separates memory load and store latencies from computa-

tion, which provides an advantage over a cache-based processor as it enable

latency hiding.

The Cell BE processor features a memory subsystem with 16 memory

banks that are interleaved on cache line boundaries. Memory access to ad-

dresses that are separated by 2KB will access the same memory bank. If

all of the memory banks are uniformly accessed in a program, the memory

throughput will be maximised.

The DMA queue in the MFC supports up to 16 entries. DMA instructions

are issued by the SPU asynchronously to the MFC. DMA transfers in the

queue are not guaranteed to be carried out in the order in which they were

issued. Two mechanisms exist for synchronisation of the DMA requests in

the queue to ensure ordered transfers, the DMA fence and DMA barrier.

Each SPE local store, as well as all external memory and peripherals

mapped to a virtual effective address memory space of 264 bytes.

2.2 Cell Broadband Engine Software

The heterogeneous processor elements in the Cell Broadband Engine Ar-

chitecture require separate programs, as the instruction sets for SPE and

PPE are different. The compiler generates a program for the SPE, which

can then be embedded into the PPE program as a Cell Embedded SPE Ob-

ject Format (CESOF) binary, or executed separately on a single SPE. The

Cell BE processor is capable of running 32-bit as well as 64-bit PowerPC

and POWER applications on the PPE, and this has made it possible to run

most distributions of linux that are compiled for the PowerPC, as well as any

standard PowerPC binary within the operating system.
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Programming the Cell BE differs from standard platform development in

that all the hardware is directly exposed to the developer who has full control

over the processor. There currently isn’t compiler available that is capable

of fully optimising code for the Cell BE processor, and so code has to be

manually optimised to exploit hardware features.

2.3 Sony Playstation 3

Figure 2.3: The Sony Playstation 3

The Sony Playstation 3 (PS3) features the Cell Broadband Engine pro-

cessor and is relatively inexpensive and commercially available. The Cell BE

processor in the PS3 runs at 3.2GHz, and only provides access to six of the

eight SPEs on board: one SPE is is assumed disabled (due to fabrication

yield) and another is allocated to the operating system virtualisation layer,

known as the Hypervisor. The Cell BE in the Playstation 3 is therefore capa-

ble of performing up to 153.6 GigaFLOP/s utilising all six of the SPEs. The

PS3 has 256MB dual-channel RAMBUS Extreme Data Rate (XDR) mem-

ory, with only 200MB RAM available to a 3rd party linux operating system.
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External memory is accessed by the XDR memory controller that supports

a bandwidth of 25 GB/s.

Due to virtualised hardware access, the PS3 prevents access to the Graph-

ics Processor (GPU) and video RAM, and does not allow computation to be

offloaded to the GPU. The PS3 has an on-board Gigabit Ethernet Adapter;

although it is not connected to the PCI bus, access is possible through the

hypervisor. The Ethernet Adapter does have a dedicated DMA unit, which

permits data transfer without the intervention of the PPE [5]. The approach

used to enable development under Linux on the PS3 is described in detail in

Appendix B

2.4 High Performance Scientific Computing

The Cell BE architecture, with its high performance design and paralleli-

sation, is suited to high performance signal processing applications. The Cell

BE has support for large page sizes to minimize memory latency for large

data sets. Details of the Huge Translation Lookaside Buffer (HTLB) support

that enable this can be found in Appendix B. The current Cell BE design is

extremely efficient for single precision floating-point operations, although the

accuracy limits imposed make this inappropriate for most scientific applica-

tions. The double precision floating-point necessary for scientific applications

still exhibit a slight performance increase over conventional processors, al-

though orders of magnitude slower than single precision performance. The

Cell BE can achieve performance of over 200 GigaFLOP/s for single precision

application, and over 14 GigaFlops for double precision operations. Modi-

fications to the Cell BE architecture to increase the performance of double

precision operations have been proposed by Williams et al. [40].

The IBM BladeCenter QS212 enables scaled performance and overcomes

many of the disadvantages of the Sony Playstation 3 for use in scientific

high performance computing. The Cell BE processor is used as a modular

2A server mainframe featuring the Cell Broadband Engine processor
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component within the BladeServer to create a high performance symmetric

multiprocessor (SMP) system.
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Chapter 3

Polyphase Filter Banks

This chapter provides an introduction to the theory and mathematical

development of Polyphase Filter Banks. Polyphase Filter Banks provide an

efficient algorithm for digital filtering used in signal processing applications.

3.1 Finite Impulse Response Filters

By definition, the Finite Impulse Response (FIR) filter has a finite number

of filter coefficients. Filtering is implemented as convolution of the filter

coefficients with the signal samples:

y[n] =
N−1∑
j=0

x[j] ∗ h[n− j], (3.1)

where x[n] are the original signal samples, y[n] are the filter output samples

and h[n] are the coefficients of the impulse response for the filter with transfer

function H(z).

�������� ����

Figure 3.1: FIR filter block diagram

A major advantage of FIR filters is the property of linear phase.
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3.2 Multirate Digital Signal Processing

A multirate filter makes use of different sample rates of the sampled input

signal during the filtering process, using the operations of interpolation (in-

creasing the sample rate) and/or decimation (decreasing the sample rate).

Multirate systems are classified as Linear Time-Varying (LTV) systems and

are of great practical importance as they can achieve much greater processing

efficiency than single-rate systems.

3.2.1 Decimation

Decimation refers to the process of reducing the sampling rate of a sig-

nal [29]. This is usually implemented as a low-pass filtering operation fol-

lowed by downsampling (discarding a number of samples).

The ratio of the input sampling rate to the output sampling rate is referred

to as the decimation factor (denoted as M). As decimation is realised by dis-

carding samples, the decimation factor is limited to an integer value, M ∈ Z.

Although an arbitrary fractional decimation factor is not possible, a rational

decimation factor can be achieved through resampling, which involves com-

bining decimation and interpolation to achieve the desired resampling factor.

The downsampled signal can be represented mathematically as

y[n] = x[Mn], (3.2)

where y is the downsampled signal, x is the original signal, and M is the

decimation factor.

�������� �����

Figure 3.2: Decimation block diagram
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In the frequency domain, the downsampling operation can be shown to

be

Y (ejω) =
1

M

M−1∑
k=0

X(ej(ω−2πk)/M), (3.3)

where Y (ejω) and X(ejω) are the fourier transforms of y[n] and x[n] respec-

tively.

The signal is passed through a low-pass filter before downsampling to en-

sure that the decimated signal obeys the Nyquist criterion, which states that

the new sampling rate must be higher than the bandwidth of the signal to

avoid aliasing.

Decimation is practically useful as a means of reducing the cost of pro-

cessing (computational cost as well as data storage cost of implementation),

which is proportional to the sampling rate.

3.2.2 Interpolation

The interpolation process increases the sampling rate of a signal by up-

sampling and then filtering the signal. Upsampling is achieved by inserting

a number of zero-valued samples between each original sample of the signal.

The upsampling step of interpolation produces a higher sampled signal that

has an identical spectrum as the original signal over the original bandwidth

in the frequency domain, but also produces spectral images centered on mul-

tiples of the original sampling rate. The undesirable spectral images are then

eliminated through the use of a low-pass filter.

The ratio of the output sampling rate to the input sampling rate is referred

to as the interpolation factor (denoted as L). The interpolation factor is also

limited to an integer value, L ∈ Z, although resampling can be used to achieve

a rational interpolation factor. The upsampled signal can be represented
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mathematically as

y[n] =

{
x[n/L] if n is an integer multiple of L

0 otherwise
(3.4)

where y is the upsampled signal, x is the original signal, and L is the inter-

polation factor.

�������� ������

Figure 3.3: Interpolation block diagram

In the frequency domain, the upsampling operation can be shown to be

Y (ejω) = X(ejωL), (3.5)

where Y (ejω) and X(ejω) are the fourier transforms of y[n] and x[n] respec-

tively.

Interpolation is useful in converting a signal for input into a system that

requires a higher sampling rate, as well as being a stage in the resampling

process.

The operations of downsampling and upsampling are a time varying, as a

unit delay at the input will cause a non-unit delay of the output.

3.3 Channelisation

Channelisation is a technique used to separate a mixed channel signal into

a number of single channels (channels). Various method for signal channelisa-

tion have been developed, such as the Hierarchical Multistage Method using

a binary tree approach [13], Digital Down Conversion, frequency domain fil-

tering using the FFT [30], and Polyphase Filter Banks [41]. The Polyphase

Filter Bank channelisation algorithm, consisting of a polyphase filter bank
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in combination with a Fast Fourier Transform (FFT), has been shown to be

the most efficient technique for channelisation with large numbers of chan-

nels [30] [33].

3.4 Filter Banks

A filter bank is a set of filters with a common input or common output

signal. The analysis filter bank splits the input signal x(n) into a number of

subband signals xk(n). The filters are typically uniformly distributed across

the band of interest.

3.5 Polyphase Representation of Filter Banks

3.5.1 The Noble Identities

The Noble Identities illustrate an equivalent view of a decimator or inter-

polator. The order of filtering and resampling may be reversed, resulting in

the equivalent systems for both the decimator, as shown in Figure 3.4, and

the interpolator, as shown in Figure 3.5.

�����
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Figure 3.4: Exchanging the order of filtering and downsampling
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Figure 3.5: Exchanging the order of upsampling and filtering

The noble identities allow for a more efficient computation as the filtering

is applied to the signal at the lower sample rate.
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3.5.2 The Polyphase Representation

If we examine the z-Transform of the analysis filter response

H(z) =
∞∑

n=−∞

h(n)z−n, (3.6)

we can split this up into sequences of even numbered coefficients and odd

numbered coefficients

H(z) =
∞∑

n=−∞

h(2n)z−2n +
∞∑

n=−∞

h(2n + 1)z−(2n+1)

=
∞∑

n=−∞

h(2n)z−2n + z−1

∞∑
n=−∞

h(2n + 1)z−2n. (3.7)

Thus, if we define

E0(z) =
∞∑

n=−∞

h(2n)z−n, E1(z) =
∞∑

n=−∞

h(2n + 1)z−n, (3.8)

we are able to expressed H(z) as

H(z) = E0(z
2) + z−1E1(z

2). (3.9)

Generalising this decomposition into M components

H(z) =
∞∑

n=−∞

h(nM)z−nM

+ z−1

∞∑
n=−∞

h(nM + 1)z−nM

...

+ z−(M−1)

∞∑
n=−∞

h(nM + M − 1)z−nM (3.10)

this can be compactly expressed as

H(z) =
M−1∑
l=0

z−lEl(z
M), (3.11)
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which is known as the Type 1 Polyphase representation, where

El(z) =
∞∑

n=−∞

el(n)z−n,

with

el(n) , h(Mn + l), 0 ≤ l ≤M − 1

El(z) are the polyphase components of H(z) [37].

The noble identity shown in Figure 3.4 can now be used to move the filter in

Equation 3.11 to the other side of the decimator so that filtering is performed

at the lower sampling rate.

3.6 Implementation of Polyphase DFT Filter

Banks

3.6.1 Polyphase Structure for Critically Sampled DFT

Filter Banks

In the case where the number of channels in the filter bank is equal to the

decimation factor (M = K), the filter bank is said to be critically sampled.

The polyphase structure for the efficient realisation of critically sampled DFT

filter banks has been shown by Rabiner and Crochiere [10].

Xk(m) =
M−1∑
ρ=0

∞∑
r=−∞

p̄ρ(r)W
−kρ
M xρ(m− r)

=
M−1∑
ρ=0

W−kρ
M [p̄ρ(m) ∗ xρ(m)] (3.12)

where WK is the k-th root of unity, p̄ρ(m) = h(Mm − p) are the polyphase

filter components, and xρ(r) is the decimated channel signal.
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Figure 3.6: Critically Sampled DFT Filter Bank

3.6.2 Polyphase Structure for Oversampled DFT Fil-

ter Banks

For the oversampled case where the number of channels is an integer mul-

tiple of the decimation factor, i.e K = MI for I ∈ N, a polyphase structure

provides an efficient realisation [10].

Xk(m) =
K−1∑
ρ=0

W−kρ
K [

∞∑
r=−∞

p̄ρ(m− rI)xρ(r)] (3.13)

where WK is the k-th root of unity, p̄ρ(m−rI) = h(Mm−p) are the polyphase

filter components, and xρ(r) is the decimated channel signal.

3.7 The Fast Fourier Transform

The FFT is described in Algorithm 1, using a modified version of the

Radix-2 Decimation in Time (DIT) FFT developed by Mullin and Small [25].

A more detailed introduction to the Fast Fourier Transform may be found in

Appendix A.
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Figure 3.7: Oversampled DFT Filter Bank

Algorithm 1 Modified Fast Fourier Transform

Require: x ∈ Cn and n = 2t

for q = 1 to t do

L← 2q

for j = 0 to L/2− 1 do

ω(j)← e(2πij)/L

end for

for k = 0 to n− 1 step L do

for j = 0 to L/2− 1 do

c← ω(j)× x(k + j + L/2)

d← x(k + j)

x(k + j)← d + c

x(k + j + L/2)← d− c

end for

end for

end for
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Chapter 4

Implementation Details

In order to fully utilize the power of the Cell BE processor, the algorithm

needs to be analysed for parallelisation, profiled and mapped to the appro-

priate elements of the processor.

4.1 Programming Model

There are multiple techniques that can be used to leverage the heteroge-

neous processor architecture of the Cell BE for efficient computation, and the

programming model needs to be determined from a study of the algorithm

that is required to be implemented. Examples of some programming models

that may be employed on the Cell BE processor are:

• Streaming (Pipelined) Model: Each SPE functions as a stage in

a pipelined algorithm. Data is streamed from the PPE into the first

SPE where processing occurs. After data is processed in a particular

SPE, it is streamed to the next SPE in the pipeline using DMA trans-

fer. The last SPE in the pipeline will store the results back into main

memory. In this model, a different program needs to be developed for

each SPE containing the relevant algorithm for a particular stage in

the pipeline. This model is suitable for algorithms that consist of a

number of separable consecutive computationally intensive stages.
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• Parallel Model: The parallel data model exploits data parallelism

within the algorithm, and distributes equal workloads of the partition

data across the available SPEs. The SPEs perform identical compu-

tation in parallel and return the results back into main memory on

completion.

• Functional offload: The PPE runs a program, and offloads compu-

tationally intensive functional procedures to be performed on a SPE,

which then returns the results to the PPE. In this model the algorithm

needs to be separated into functional blocks and a separate program

written for each function to be executed on a SPE.
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Figure 4.1: Examples of the programming models: (a) Streaming

(Pipelined); (b) Parallel; (c) Functional Offload.

The model used for the implementation of Polyphase Filter Banks will

exploit data parallelism and view the Cell BE processor as a homogeneous

data parallel machine (Parallel Model) with heterogeneity in the PPE control

code [39]. The computationally expensive code is partitioned to be executed

in parallel across the available SPEs. The PPE program is written to format

the data in memory, and for control and management of the SPEs. This

programming model requires the efficient parallelization of the algorithm as

well as static scheduling of DMA operations to marshal data between the
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relevant local stores in the SPE and main memory. Two different programs

are written, the PPE control program, compiled with the PPU compiler1,

and the SPE workload program that is compiled with the SPE compiler2.

The SPE program is embedded within the PPE program, which loads the

SPE program into threads that execute on each SPE at runtime.

Due to the limited size of the SPE Local Store, a large program may have

code that does not entirely fit within this limit. To address this issue a

technique called Code Overlays can be used [18]. Only a small segment of

code is loaded into the SPE, known as the root segment, and this code then

will load the relevant segments of code into an overlay region from main

memory when needed. In this way, the entire SPE program does not need

to be present in the local store at the same time.

4.2 Mapping the algorithm to the Cell BE

Architecture

4.2.1 Algorithm complexity analysis

The Polyphase Filter Bank uniform DFT channelisation algorithm is O(n log2 n),

derived from the FIR filtering process that is O(n), where n is the order of

the filter, and the FFT of O(n log2 n).

4.2.2 Algorithm partitioning

A control program was written and compiled for the PPE, which embeds

the compiled SPE program within it and creates threads for each SPE that

run the SPE program. The computationally intensive code is mapped to the

SPE processors that are designed for high performance. The input data and

filter coefficients are initially split into the K separate channels in memory.

1IBM XL C PPU compiler
2IBM XL C SPU compiler
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The polyphase filter banks algorithm can be divided into two stages:

FIR filtering : Each channel is processed by upsampling (only in the case

of over-sampled filter bank) and then convolving the filter tap coefficients

with the channel coefficients.

FFT : For each output sample of the FIR filtering stage, a Fast Fourier

Transform is performed across all the channels.

The input signal data for the filter is aligned in main memory by the PPE

in the form of a 2-dimensional matrix, with the relevant channel-padding

required to ensure quadword DMA transfers. This data is then partitioned

to run across the six available SPEs, allocating K/6 channels to be processed

in each SPE. This is illustrated in Figure 4.2 (Step 1). The FIR filtering

stage (Step 2) retrieves the data for each channel from main memory, which

it then processes. The results of each channel are then partitioned further

across the six SPEs, and each segment, of size N
6K

is transfered to the relevant

SPE via DMA. Once all filtering has been completed in all the SPEs, the

FFT processing is started (Step 3), performing a 1-dimensional FFT on each

column of data. The results of the FFT stage are then copied back to main

memory via DMA (Step 4).

4.2.3 SPE program algorithm

This section describes the details of the algorithm implemented on the

SPE for Polyphase filter bank processing. The program code that runs on

each SPE is described in Algorithm 2. The algorithm runs on SPE n, where

0 ≤ n ≤ N − 1, assuming an input signal of length S, and filter coefficients

of length F .
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Figure 4.2: Algorithm stages for implementation using six SPEs
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Algorithm 2 Program for SPE n

1: Wait for signal from PPE to begin FIR filter stage

2: Assign i← 0

3: DMA request to get channel nK/N signal data into SBuffer i

4: DMA request to get channel nK/N filter data into FBuffer i

5: for k = 1 to K/N − 1 do

6: j ← i⊕ 1

7: DMA request to get channel nK/N + k signal data into SBuffer j

8: DMA request to get channel nK/N + k filter data into FBuffer j

9: Wait for DMA requests for Buffers i to complete

10: for x = 0 to N − 1 do

11: Calculate FIR filter results for values x((S + F )/K − 1)N to (x +

1)((S + F )/K − 1)N − 1 by convolving SBuffer i and FBuffer i

12: DMA request to put FIR filter results into local store of SPE x

13: end for

14: i← j

15: end for

16: Wait for DMA requests for Buffers i to complete

17: for x = 0 to N − 1 do

18: Calculate FIR filter results for values xS/N to (x + 1)S/N − 1 by

convolving SBuffer i and FBuffer i

19: DMA request to put FIR filter results into local store of SPE x

20: end for

21: Send signal to PPE to indicate end of FIR filter stage

22: Wait for signal from PPE to begin FFT stage

23: for k = 0 to (S + F )/K − 1 do

24: Calculate K-point FFT for column k

25: DMA request to put FFT results for column k into main memory

26: end for

27: Send signal to PPE to indicate end of FFT stage
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4.3 Communication Analysis

Communication between the individual processors is an important con-

sideration on many-core architectures such as the Cell BroadBand Engine

Architecture. The algorithm partitioning strategy determines the amount

and type of communication that is required.

All DMA transfers are non-blocking and unordered, issued through the

MFC using special instructions. The MFC instructions include a tag for

DMA requests, and the MFC provides functions that stall the SPU until

all requests that have a specified tag have completed. This mechanism is

used in the polyphase filter bank implementation to synchronise the SPEs

after the FIR filtering stage, as the FFT stage is only able to begin once

all the channels have been processed and the data has been transfered to

the relevant buffers within the local store of the SPE. The MFC must be

manually controlled though intrinsics provided as language extensions and

libraries in the IBM Cell SDK. The software control of the MFC allows the

static scheduling to be optimised to perform efficiently for the particular

implementation.

4.3.1 Inter-processor communication

Communication between the processor elements is facilitated by mailboxes,

signal channels and the ability to transfer data between the Local Stores of

the SPEs.

The communication required between processors in the implementation

proceeds as:

• The PPE sends a mailbox message to the SPE, currently waiting on a

mailbox.

• The SPE receives the mailbox message and begins the FIR filtering

stage.
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• The SPE pulls the required data for processing each channel from the

main memory, performs the filtering, and transfers the results into the

LS of the appropriate SPE.

• The SPE sends a flag via the mailbox to the PPE to indicate that it

has completed the FIR filtering stage.

• The PPE sends a mailbox message to the SPE, currently waiting on a

mailbox.

• The SPE receives the mailbox message and begins the FFT stage.

• The data required for processing has already been transfered into the

local store. It is processed and the results are transferred back into

main memory.

• The SPE sends a flag via the mailbox to the PPE to indicate that it

has completed the FFT stage, and indicating the number of times the

algorithm needs to be performed in order to completely process all the

data.

• If there are no more repetitions of the algorithm, the PPE waits for

the SPE to complete and then exits, otherwise the whole algorithm is

repeated for the next segment of data.

Communication between the synergistic processors can be achieved with

DMA by mapping the local store of an SPE to an effective address in the

main memory through the PPE. The PPE can then provide the addresses

of each SPE local store to all the the SPEs via the DMA or the mailbox

mechanism. An information control structure is constructed in the PPE

that contains information about the algorithm needed by the SPE, as well

as memory addresses of the input and output buffers and the addresses of

each of the local stores for the SPEs. This control structure is passed to each

SPE as it starts so that it will be able to use the information to carry out

the processing.
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4.4 Performance Considerations

There are numerous architectural features that need to be taken into ac-

count in developing code for the Cell BE processor. An efficient load balanc-

ing strategy is required to ensure that all of the SPEs run at peak performance

with as little computational overhead as possible and the effect of memory

latency needs to be minimized. Software controlled explicit DMA scheduling

for has a positive impact on power consumption and memory latency.

The model also needs to be aware of DMA latency issues, and so a double

buffering scheme has been employed to hide the DMA latency. Although

it is possible to initiate DMA transfer from the PPE via the SPE MFC

proxy, this should be avoided as SPE-initiated DMA requests are performed

in less cycles. The SPE command queue is double the size of the PPE proxy

command queue, and the high number of SPEs relative to the single PPE

further supports this reasoning.

Double-buffering techniques are used to hide memory latency, as DMA

requests are asynchronously carried out at the same time as computation.

In the first stage of the algorithm, the data is continuously brought into the

local store of the SPE, and it is continuously put back into main memory

at the end of the FFT stage. This large volume of communication degrades

performance. Overlapping the memory transfers with computation within

the SPE allows the latency to be hidden when the computation is more ex-

pensive than a single data transfer. This occurs with a larger input signals

and a higher channel count in the Polyphase Filter Bank as the FIR filter-

ing and FFT processing are able to hide the latency of the data transfers.

Algorithms withpredictablee memory access patterns are able to exploit the

software managed MFC to increase performance.

The SPE processor architecture implements Even and Odd pipelines (see

Figure 2.2) in the datapath, where the each instruction in the instruction set

is mapped to one or the other. To achieve maximum performance, instruc-
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tions can be interleaved in such a way that both pipelines are filled, effec-

tively allowing the SPE to execute two instructions simultaneously. Software

pipelining is used to statically allocate the order of instructions which allows

much greater control over the performance of the processor.

Figure 4.3: SPE program with Dual Issue Pipelined instructions

The use of multi-threaded code must be carefully analysed as context

switching on the SPE is very expensive: the full Local Store and DMA

queues need to be saved and restored, causing a performance hit.

As there is no support for branch-prediction, it is important to eliminate

branching in code as much as possible to avoid performance degradation.

The SPE supports instructions for branch hints, allowing behaviour of the

processor to be software controlled and optimised. Loops withing code should

be unrolled to minimize branching, and this is made possible by the large

register file provided by the SPE. Unrolled loops in code also provide ad-

ditional instructions for the developer to efficiently schedule using further

optimisation techniques.

34



The DMA only supports quadword aligned memory transfers of multiples

of 16 bytes, and so data needs to be aligned in memory and sufficiently padded

to ensure that the system bus will be able to efficiently execute DMA requests

with no errors.

4.5 SPE code vectorisation

The Cell BE processor supports the Altivec Single Instruction Multiple

Data (SIMD) instruction set. The SPE has a 128 entry 128-bit wide register

file, and the SIMD vectorisation intrinsics allow for simultaneous operation

on 4 single precision floating point values. In code that is not fully vectorised,

scalar operations cause performance loss, as they are processed in the vec-

tor datapath due to lack of unaligned load support, with extra instructions

needed to permute data for scalar access. The technique for vectorising both

the inner and outer loops [34] was applied to the FIR filter algorithm. Vector

instructions such as Multiply and Add (spu madd) allow the FIR filtering to

be efficiently computed on the SIMD architecture.

Reordering calculations to increase data locality is able to provide a per-

formance increase in algorithms that are hard to optimise, such as the FIR

(convolution) processing. Kraszewski [21] has shown that optimised AltiVec

FIR code is 8 to 14 times faster than scalar code, in spite of only 4-way SIMD

parallelism.

4.6 Implementation Limitations

Due to the nature of the Cell BE architecture, the code that was developed

has limits on the size and type of inputs that are supported. The size of the

Local Store memory available on each SPE limits the amount of data that

can be stored for processing in a single pass. If the memory requirements

of the algorithm exceed the capacity of the local store (250 Kilobytes), a
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partition will need to be created and the data will be processed in multiple

passes.

The algorithm will encounter problems when run with a large number of

channels, as the implementation creates a storage buffer for the FFT pro-

cessing (which is larger as it has to support complex numbers). This restricts

the value of the number of channels to less than a few thousand (K < 2048).

For a similar reason, in creating a buffer for the channel filtering, data sets

that are heavily oversampled will cause problems as the upsampling stage

needs to allocate memory to hold the upsampled signal, and this puts a limit

on the length of the channel input when used with oversampling.

4.7 Compiler Optimisations

The code was compiled for the Cell BE using the IBM XLC C compiler

provided with the IBM Cell SDK version 2.1. The efficiency of the compiled

code will not be explored. The performance of the code relies on the as-

sumption that the SPE intrinsics that are provided with the Cell SDK are

compiled with reasonable efficiency.

4.8 The IBM Full System Simulator

The Cell Software Development Kit (SDK) includes the IBM Full System

Simulator which is useful for both simulation and performance modelling.

The algorithm was run on both the IBM Full System Simulator as well as

the Playstation 3. The system simulator is useful for debugging during the

development of the code, using a modified GDB3 to support debugging of

both PPE and SPE code. The profiling tools that are available with the

SDK are very useful as a means of finding bottle-necks in the program and

testing program performance.

3The GNU Debugger
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4.9 Filter design

The filter selected for use in the PFB algorithm was designed using the clas-

sic windowed linear-phase FIR filter design method. A plot of the low-pass

FIR filter of order 128, designed using the Hamming-window, with normal-

ized cutoff frequency of 1/16,shown in Figure 4.4 along with the frequency

response.
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Figure 4.4: Windowed FIR filter
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Chapter 5

Performance evaluation

5.1 Bandwidth and Latency

The system bandwidth plays an important role in assessing the perfor-

mance of a processor. Often the memory latency is the bottleneck of the sys-

tem design, as processing speeds are orders of magnitude faster than external

memory bandwidth. Software controlled memory offers greater optimisation

over the traditional hardware cache, making performance more predictable

and efficient [20]. As mentioned in Section 2.1.3, the Cell BE processor fea-

tures a 300 GB/s element interconnect bus (EIB) with system memory access

at a peak transfer rate of 25.6 GB/s. To minimize the impact of the slower

system memory, programs can try and keep communications and data trans-

fers on chip by using mechanisms such as inter-processor DMA (Local Store

to Local Store transfer between SPEs) and signalling (Mailboxes and signal

registers) for small data communication.

The Cell BE processor supports up to 128 simultaneous DMA transfers

between the local stores of the eight SPEs and main memory, which is sig-

nificantly higher than that of a standard processor. Due to the memory

structure of the Local Stores, main memory and the large register file on

the SPE, as well as asynchronous DMA transfers, static scheduling is able
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to hide memory latency by making use of double buffering, as described in

Section 4.4.

With a transfer rate of 25.6 GB/s in the SPE, at least four single precision

floating point operations would need to be performed on a floating point (4

byte) value in order to hide the communication latency. This leads to a total

of 24 operations across 6 SPEs required to hide the latency. The ability to

fully hide memory latency and achieve higher throughput would depend on

the nature of the algorithm that is implemented. This is not always possible

for some algorithms such as sparse linear algebra that have irregular memory

access patterns and use large amounts of indirect memory addressing. For

the Polyphase Filter Bank implementation, effective latency hiding would

only be possible with larger data and larger numbers of channels.

Figure 5.1 shows the DMA profile for the Polyphase Filter Bank imple-

mentation on the SPE. The first stage of the algorithm issues DMA GET

commands to retrieve the channel and filter data into the local store. After

applying the FIR filtering to the channel, DMA PUT commands are used to

transfer the results to the relevant SPE Local Store. After synchronisation,

the final phase consists of calculating the FFT for each sample and then using

the DMA PUT command to transfer the results back into main memory.

Figure 5.1: DMA profile
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5.2 Performance Per Watt

An important metric often used to measure processor efficiency is the per-

formance per Watt, which measures the performance throughput of the pro-

cessor against its power comsumption [16].The architecture of the Cell BE

processor emphasizes efficiency per watt, with a design that prioritises band-

width over latency. The SPE architecture also favours peak computational

throughput at the expense of higher complexity code. The memory hierar-

chy of the cell is software controlled, and is therefore able to achieve a higher

degree of power efficiency. The Cell BE processor is thus able to deliver high

frequency computation at a low voltage [36].

The Cell BE processor operates at about 30 Watts, and with the IBM

BladeCenter QS211 the performance has been measured to achieve 1.05 Gi-

gaFLOP/s per watt. This gives the Bladecenter a peak performance of ap-

proximately 460 GigaFLOP/s, which can easily be scaled to achieve perfor-

mance of up to 6.4 TeraFLOP/S in a single BladeCenter chassis, and over

25.8 TeraFLOP/s using a rack.

5.3 Precision and accuracy

5.3.1 Floating-point representation

Floating point numbers are represented digitally in the form x = xm2c

where xm is the mantissa (1
2
≤ |xm| < 1) and c is the exponent. The

floating-point representation offers an advantage of a larger dynamic range

than that of a fixed-point represenation. A disadvantage of the floating point

representation is the tradeoff of dynamic range to the Signal-to-Noise ratio

(SNR).

1A server mainframe featuring the Cell Broadband Engine processor
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The Cell Broadband Engine supports limited IEEE compatible floating

point arithmetic, including rounding, NAN-handling2, overflow and under-

flow indication and exceptions [14]. To achieve high computation throughput,

the SPU architecture is optimised for reduced area and power requirements,

therefore floating point arithmetic is limited to only the most common modes

and is not fully IEEE 754 standard compliant. This causes denormalised

numbers to be automatically cleared to zero for all floating point operations

on the SPU, as well as no support for trapping exception handling [27]. The

extremely high performance single precision floating-point operations are fur-

ther limited: only truncation rounding3 is supported, and IEEE NaN and Inf

are not recognized, causing overflow results to saturate to the largest rep-

resentable positive or negative values. This design decision was driven by

the target applications of high media and real-time game workload through-

put and three-dimensional graphics operations. These applications do not

require full IEEE compliance, as small errors are tolerable as a tradeoff for

high performance throughput.

The double precision floating point operations are not fully pipelined,

which results in a throughput that uses 7 clock cycles (1 instruction and

6 stall cycles) [19]. Single precision operations on the SPU have a theoretical

throughput of 25.6 GigaFLOP/s and can be expected to run close to theoret-

ical peak performance, whereas the double precision throughput rate is only

about 1.83 GigaFLOP/s [23, 24], resulting in performance expectations of a

factor of 14 below that of peak performance [39]. Computations that demand

full precision accuracy will therefore have a peak system-wide performance

of only 14.4 GigaFLOP/s on the Cell BE processor (almost 11 gigaFLOP/s

on the PlayStation 3 with only six SPEs).

2Not-A-Number
3Rounding towards zero
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The SPU does not support common saturating integer data types that are

available on IBM VMX4 architectures, as they cause a lower dynamic range

which degrades results. The integer data types are extended for intermediate

operations and are then performed without saturation, followed by saturating

pack operations. Repeated round-off during computation is also avoided.

This produces reliable results as well as conserving memory and reducing

memory bandwidth [14].

5.3.2 Signal-to-Noise ratio

The floating point representation of numbers provides a way to trade off

signal-to-noise ratio for an increase in dynamic range. For the n-bit floating

point representation of a number, with n − c bits in the mantissa (used for

precision) and c bits in the exponent (used for extending the dynamic range),

the dynamic range of the number can be calculated as

Dynamic Range (dB) = 20 log 22c

= 6.02× 2c, (5.1)

with a Signal-to-Noise ratio equal to

SNR (dB) = 20 log 2n−c

= 6.02× (n− c) (5.2)

For applications such as signal processing where the dynamic range is

unpredictable or large, the floating-point representation is preferable over

the fixed-point representation. The IEEE floating-point format supported

in the Cell BE processor is 32-bits wide, using 24 bits for the mantissa and

the remaining 8 bits for the exponent. Therefore, in the case of the Cell BE

processor SPU, the dynamic range offered for floating-point is 1541 dB, with

a Signal-to-Noise ratio of 144 dB.

4Also known as AltiVec or Velocity Engine
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5.3.3 Quantisation noise

Quantisation noise is introduced by the digital representation of a signal

and results in irreversible errors in the signal. The quantization noise can be

viewed as an additive noise source e(n), that is uncorrelated with the original

signal, as shown in Figure 5.2.

Figure 5.2: Noise model for quantization

Quantization noise is introduced in finite precision floating point addition

and multiplication, and can be modeled as

Fl{x1 + x2} = x1 + x2 − (x1 + x2)na, (5.3)

Fl{x1x2} = x1x2 − (x1x2)np (5.4)

where na and np are random variables with zero mean that are independent

of other errors in the signal [12].

The variances are approximately

σ2
na

u 0.165× 2−2(n−c), (5.5)

σ2
np

u 0.180× 2−2(n−c) (5.6)

where n−c is the number of bits in the mantissa [35]. Therefore, for the Cell

BE processor SPU where n−c = 24, the quantization noise exhibits variances

of 5.8× 10−16 and 6.4× 10−16 for floating-point addition and multiplication

respectively. A detailed model of round-off and scaling noise in multirate

systems such as the polyphase filter bank can be found in Olsson et. al. [28].
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Errors that in the coefficients of a digital filter will cause changes to the

frequency and phase response characteristics of the filter. These errors cannot

be avoided in a digital system, but can be reduced by using higher precision

for the digital representation of the coefficients. This effect is more severe

for Infinite Impulse Response (IIR) filters, as it could cause instability in

the system by affecting the placement of the poles and zeros of the transfer

function. In this implementation we are using FIR filters, therefore these

errors can be overlooked.

5.4 Performance Results

5.4.1 Testing

The Polyphase Filter Bank algorithm was written for the standard Intel

x86 architecture in order to provide a comparison with the Cell BE processor.

I have chosen to keep much of the algorithm the same, with optimisations

applied on the Cell BE processor code to allow the algorithm to take advan-

tage of the architecture. The results have been generated on an Intel Core 2

Duo processor with a clock speed of 2.0 GHz and 2 Gb RAM. These results

were compared against the code running on the Sony Playstation 3, as well

as performance statistics generated from the IBM Full System Simulator.

5.4.2 Input signal

This section will examine the effect of the input signal on the performance

characteristics of the algorithm. The size of the input signal will be measured

against the speed of computation to obtain a growth rate estimation for the

PFB algorithm on the Cell BE processor. As the size of the input increases

such that the memory space in the SPE local store is no longer able to contain

all the data required to process the PFB, the code splits the processing into

smaller segments. The program then processes each segment through both

stages of the PFB (the FIR filtering as well as the FFT) in a loop until all
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of the data has been processed. This does not have a major performance

impact, as the latency of the multiple stages of memory reading and write-

back as the algorithm in the SPE is executed in a loop is hidden due to the

high computational load brought about by the larger data set.
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Figure 5.3: Single Precision Performance comparison

Figure 5.3 shows a comparison of the results for single precision computa-

tion as the input length increases. The performance of the code on the Cell

BE processor grows much more efficient as the length of the input increases.

A performance speedup of a factor of 3 over the standard processor can be

observed with input length of 524288, and this speedup continues to grow as

the graphs diverge. Figure 5.4 shows a comparison of the results for double

precision computation as the input length increases. This follows the same

trend as the results for the single precision. A performance speedup of a

factor of 6 over the standard processor can be observed with input length of

262144, and this speedup continues to grow as the graphs diverge. Due to the
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Figure 5.4: Double Precision Performance comparison
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limited size of the local store, the algorithm could not be tested further for

larger inputs in its current implementation. Figure 5.4 shows that the results

for double precision could not be calculated for values larger than 262144 due

to the larger memory requirements of the double precision representation. In

order scale beyond these limits, additional techniques such as code overlays

would need to be used, as well as a distributed FFT algorithm to partition

the FFT processing between stages.

In Figure 5.5 a profile of the SPU cycle time is shown. From this figure

it can be seen that on small input, the proportion of the CPU cycle time

spend idle waiting for synchronisation is extremely large. In this case, the

low number of input samples results in the computational time relatively low

compared to that of overhead. As the input sample number increases, the

SPU is able to hide most of the stalled latency as the computation time is

relatively high compared to the overhead incurred.

An increase in the order of the filter used in the algorithm is not explored as

it has the same effect as an increase in the signal length on the performance.

Figures 5.6, 5.7 and 5.8, show that the throughput rate achieved on the

IBM Full System Simulator reaches only about 200MegaFLOP/s for single

precision and 30MegaFLOP/s for double precision on a single SPE. This

lower performance is due to the limit on the data set sizes that cause the al-

gorithm to be unable to fully hide the communication latency. The overhead

of the latency is not small enough relative to the processing workload.

5.4.3 Channel Count

The effect of the number of channels on the performance can be seen in

Figure 5.9. As the number of channels grows, the processing load of each

individual SPE grows slightly as the filtering algorithm uses a double buffered
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Figure 5.6: Single Precision SPU Performance

Figure 5.7: Single Precision SPU Profile

Figure 5.8: Double Precision SPU Profile
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scheme to fetch the data for each channel from the main memory. the number

of channels is limited by the size of the local store buffer, and could not be

tested beyond 2048. The increase in performance over a wide range of channel

values is very small, as the variation from 32 channels to 2048 channels only

results in a difference of a single millisecond.
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Figure 5.9: Single Precision Performance comparison

5.4.4 Oversampling ratio

In this implementation of the algorithm, there is a limit on the oversampling

ratio as the storage space for the expanded signal for each channel assigned

to an SPE for processing needs to collectively fit within the local store limits

along with the code. As the system becomes more oversampled, the per-

formance decreases at a high rate. This is due to the extra processing load

required when filtering the upsampled signals.
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Figure 5.10: Effect of Oversampling Ratio on performance

5.5 Polyphase Filter Bank Response

The Polyphase Filter Bank algorithm is shown to be more effective at

eliminating crosstalk between channels than the traditional FFT method of

channelization. The Frequency response for a 32 Channel Twice Oversam-

pled PFB, using the Hamming Windowed filter, is shown in Figure 5.11.

Figure 5.11 shows the Frequency response for a 16 Channel Twice Over-

sampled PFB, using an equiripple filter designed using the McLellan-Parks

algorithm, is shown in Figure 5.11.
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Figure 5.11: Polyphase Filter Bank Frequency Response for Windowed filter
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Figure 5.12: Polyphase Filter Bank Channels
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Figure 5.13: Polyphase Filter Bank Frequency Response for Equiripple filter
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Chapter 6

Analysis

The Cell BE exhibits favourable performance over a traditional homo-

geneous multicore processors. The Polyphase Filter Bank algorithm was

severely limited by the size of the local store in the SPE, but it shows

a significant speedup over the range of inputs that were tested. The Cell

BE processor performance should become particularly efficient for very large

workloads, where the raw computational power of the SPEs will be able to

effectively hide communications and memory latency. The Cell BE processor

allows direct control over memory, which is an advantage over cached proces-

sors for algorithms that have predictable memory access patterns to achieve

peak performance. The effectiveness of the Cell BE for high performance

processing would be dependant on the nature of the algorithm.

The Sony Playstation 3 itself imposes further limits such as

• Slow main memory access through virtualised hardware.

• Limited main memory capacity on the PS3.

• GigaBit ethernet connection that will become a bottleneck in a cluster

environment.

• Large performance difference between single precision and double pre-

cision computation.
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The disadvantage of the Cell BE Processor is the lack of portability of

code developed to run efficiently on it. The code needs to be highly opti-

mised manually to run specifically for the Cell BE architecture, which takes

a considerable investment of time to learn to use efficiently.

6.1 Further Research

This implementation focused on a limited implementation of the Polyphase

Filter Bank algorithms. This implementation could be expanded to run in a

cluster environment (using MPI), or on a SMP BladeServer system to enable

it to processes larger data sets. Further exploration into signal processing

applications and the implementation of the Polyphase Filter Bank within a

software correlator.

As processor design turns towards many-core architectures, effective de-

velopment techniques will need to be explored. These techniques need to

be able to leverage the architectures efficiently for high performance com-

putation of the most common classes of algorithms (the dwarfs [1]). As the

Cell BE becomes a mature architecture, more libraries and support should

become available that make it efficient to run most of the dwarfs efficiently

on the Cell Broadband Engine Architecure.
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Appendix A

The Fast Fourier Transform

This appendix describes the algorithm that is used to efficiently implement

the Discrete Fourier Transform (DFT), known as the Fast Fourier Transform

(FFT).

A.1 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) consists of a mapping F : Cn → Cn

that transforms a discrete time signal into its discrete frequency domain

representation. defined as for j = 0, . . . , n− 1,

yj =
n−1∑
k=0

xke
−2πikj

n (A.1)

Using matrix notation [38], equation A.1 can be expressed as

y = Fnx,

where

Fn = (fkj), fkj = W kj
n = e

−2πikj
n (A.2)

is the n-by-n DFT matrix and Wn is the n-th root of unity. The DFT exhibits

a computation complexity of O(n2).
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A.2 Fast Fourier Transform

The Fast Fourier Transform is a efficient way of calculating a n-point DFT

from a pair of n
2
-point DFTs. This technique exploits the realization that in

viewing the DFT in terms of sparse matrix multiplication, only the diagonals

of the blocks are used to decompose the matrices. The is known as the Radix-

2 FFT, and was first demonstrated by Cooley and Tukey [9] in 1965. The

FFT exhibits a computation complexity of O(n log2 n)

A.3 The Cooley-Tukey Framework

The Cooley-Tukey Radix-2 DIT FFT in-place algorithm is described by Van

Loan [38].

Algorithm 3 The Radix-2 Fast Fourier Transform

The initial bit permutation, x ← Pnx, can be calculated as in Algo-

rithm 4

Require: x ∈ Cn and n = 2t

x← Pnx

for q = 1 to t do

L← 2q; r ← n/L; L∗ ← L/2

for j = 0 to L∗ − 1 do

ω ← cos(2πj/L)− i sin(2πj/L)

for k = 0 to r − 1 do

τ ← ω · x(kL + j + L∗)

x(kL + j + L∗)← x(kL + j)− τ

x(kL + j)← x(kL + j) + τ

end for

end for

end for

57



Algorithm 4 FFT Bit Permutation

Require: x ∈ Cn and n = 2t

Ensure: x← Pnx

for k = 0 to n− 1 do

j ← 0; m← k

for q = 0 to t− 1 do

s← floor(m/2)

j ← 2j + (m− 2s)

m← s

end for

if j > k then

x(j)↔ x(k)

end if

end for

Algorithm 5 Matrix Form of The Radix-2 Fast Fourier Transform

The Radix-2 FFT algorithm may alternatively be represented in matrix form

as follows:

Require: x ∈ Cn and n = 2t

x← Pn

for q = 1 to t do

L← 2q; r ← n/L

xL×r ← BLxL×r

end for

where

BL =

[
IL∗ ΩL∗

IL∗ −ΩL∗

]
, L = 2q, r = n/L, L∗ = L/2

IL∗ is the L∗-dimensional Identity matrix, and ΩL∗ is a diagonal matrix with

diagonal elements 1, ωL, . . . , ωL∗−1
L .
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Appendix B

Configuration of the Sony

Playstation 3

This appendix will describe the process of configuring the Sony Playstation

3 by installing the Linux operating system and the IBM Cell 2.1 SDK, as

well as the development tool-chain that was used to compile, debug and test

the program on the Cell BE.

B.1 Installing Linux

The Ubuntu operating system was selected to be installed on the PS3. A

custom kernel was needed to support the PS3 virtualized hardware layer.

The Cell BE PPE processor has a 64-bit PowerPC core, and is capable of

running the PowerPC (ppc) version of any linux distribution. The linux

kernel has had support for the Cell BE since version 2.6.16, which includes

the SPU filesystem. Advice and step by step instruction can be found from

the PSUbuntu1 community.

1http://www.psubuntu.com
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B.2 Huge TLB support

The Cell BE SDK supports the huge translation lookaside buffer (TLB)

filesystem, which allows a large continuous memory area of up to 16MB to be

allocated. The large memory area is useful for applications with large data

requirements. By default, in the binary distribution of the kernel provided

with Ubuntu, support for huge TLB pages has been disabled. This means

that the kernel needs to be recompiled to support the huge TLB psuedo-

filesystem (hugetlbfs). Allocating large pages has a speed advantage over

allocating memory from the heap in the PPE. From the program code, a call

to the linux function mmap will allocate a huge page and avoid TLB misses

on the processor.

B.3 The IBM Cell SDK

IBM has release the Cell SDK (currently version 2.1), which provides all the

development tools that are needed to compile, debug and test code for the

Cell BE. The bus width of the PowerPC core is 64 bits, so compilation is

directed at the 64-bit target architecture.
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Glossary

CESOF Cell Embedded SPE Object Format

DMA Direct Memory Access

DSP Digital Signal Processing

EIB Element Interconnect Bus

FIR Finite Impulse Response

FFT The Fast Fourier Transform

GigaFLOP/s Giga-floating point operations per second

LS Local Store

MFC Memory Flow Controller

PFB Polyphase Filter Bank

PPE Power Processing Element

PS3 Sony Playstation 3

PSD Power Spectral Density
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RISC Reduced Instruction Set

SIMD Single Instruction Multiple Data

SNR Signal-to-Noise Ratio

SPE Synergistic Processing Element

SPU Synergistic Processing Unit

TeraFLOP/s Tera-floating point operation per second

XDR Extreme Data Rate memory
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