

TOP-DOWN DESIGN OF DSP
SYSTEMS: A CASE STUDY

Yann Grégor Tréméac

A dissertation submitted in fulfilment of the

requirements for the degree of Master of Science in

Engineering (Electrical)

University of Cape Town,

1999

DECLARATION

I declare that this dissertation is my own, unaided work. It is being submitted for

the degree of Master of Science in Engineering in the University of Cape Town. It

has not been submitted before for any degree on examination in any other

university.

…………………………

Signature of Author

Cape Town September 1999

ABSTRACT

The primary goal of this thesis is to investigate the use of a formal top-down

methodology for designing digital signal processing systems. As a case study, the

design of a synthetic aperture radar (SAR) digital preprocessor is attempted. The

preprocessor is targeted for the Texas Instruments’ TMS320C80 DSP. In other

work linked to this project, the same preprocessor was implemented by Grant

Carter on a field programmable gate array (FPGA) [2]. Secondary goals of this

thesis are to document the various tools and techniques used to accelerate

prototyping, and to compare the DSP and the FPGA implementation.

The proposed methodology starts with the client specifications to create an initial

abstract decomposition of the application. This model is then refined until the final

design is obtained. The development process is broken down into four steps: the

specification, the functional design (preliminary hardware-independent design),

the implementation definition (detailed hardware-dependent design) and the

implementation steps. A successful implementation is shown to follow from this

process.

The case study experience shows that the top-down approach undoubtedly has its

advantages for designing DSP systems, although it must be accompanied by

bottom-up principles. One of the advantages is that more emphasis is placed at

design level and that the designer is initially forced to think about the solution in a

hardware-independent way. Thus, the designer is more likely to produce reusable

specifications and solutions of general applicability.

The use of C as the programming language definitely increased the programmer

productivity, as opposed to Assembler. The C80 multitasking operating system

also helped in the transition from functional to executive model. However, the use

of both C and the multitasking operating system has an execution time cost that

cannot precisely be evaluated. This constitutes a major drawback: it means that

algorithm complexity (i.e. the number of mathematical operations involved) must

be evaluated at functional design level and that the DSP must be chosen with

speed and memory capabilities largely superior to the algorithm complexity

evaluation. In our case, the ratio between the time based on the algorithm

complexity evaluation and the actual program execution time is approximately

one to three.

Some comparisons have been carried out with the FPGA’s implementation [2].

The specification and functional design steps lead to similar results, but major

differences exist in the hardware-dependent design. Generally speaking, the

implementation of a system in an FPGA implies working at a less abstract level

than the mapping of a functional design onto a DSP.

ACKNOWLEDGMENTS

I wish to express my gratitude to all those who, by their advice, comments and

constructive criticisms, contributed to this thesis project.

I would especially like to thank Professor Mike Inggs for his unfailing assistance

throughout the period of development; Jasper Horrell for his help with the SAR

theory, his comments and ideas; Grant Carter whose experience on FPGAs has

been greatly useful; Amit and Thomas Bennett for their advice and comments.

Sincere thanks to Rolf Lengenfelder whose simulator is a priceless gift for the

radar remote sensing group.

 ii

TABLE OF CONTENTS

1. OVERVIEW...9

2. DESIGN METHODOLOGY ..12

2.1 THE DESCRIPTION MODEL 13
2.2 THE DEVELOPMENT PROCESS 14

2.2.1 The Specification step 14
2.2.2 The Functional Design step 14
2.2.3 The Implementation Definition step 15
2.2.4 The Implementation step 15

2.3 CONCLUSIONS 16

3. THE TMS320C80 DSP ..18

3.1 DSP ARCHITECTURES: A BRIEF OVERVIEW 18
3.2 THE TMS320C80 ARCHITECTURE 20
3.3 THE PROGRAMMING ENVIRONMENT 22

3.3.1 The Software Development Board 22
3.3.2 The developing tools 23
3.3.3 The multitasking executive 24

3.4 CONCLUSIONS 25

4. THE SPECIFICATION STEP..26

4.1 RADAR BACKGROUND 26
4.1.1 SAR concepts 26

4.2 REQUIREMENTS 33
4.3 FROM REQUIREMENTS TO SPECIFICATIONS 34
4.4 CONCLUSION : TOP-LEVEL DESCRIPTION MODEL 35

5. THE FUNCTIONAL DESIGN STEP ..37

5.1 PROPOSED MODELS 37
5.2 FILTER DESIGN 39

5.2.1 The phase aspect 39
5.2.2 Coefficient calculation 40
5.2.3 Filter designing tools 41
5.2.4 Filter quantisation effects 42

5.3 ANALYSING MODELS ALGORITHM 43
5.3.1 The Presummer/Prefilter frequency response 43
5.3.2 Comparing the model frequency responses of both models 44
5.3.3 Refining the Presummer and Prefilter models 45
5.3.4 Comparing both model algorithm complexity 45

5.4 ALGORITHM VALIDATION: SIMULATING THE PREPROCESSOR 46
5.4.1 The simulation set-up 46
5.4.2 The simulation results 47

5.5 MODEL REFINEMENTS 54
5.5.1 The data width consideration 54
5.5.2 The real-time consideration 55

5.6 CONCLUSION: FUNCTIONAL-LEVEL DESCRIPTION MODEL 55

 iii

6. THE IMPLEMENTATION DEFINITION STEP ..58

6.1 THE DIFFERENT DESIGN CHOICES 58
6.1.1 Choosing the C80 58
6.1.2 The appropriate use of the C80’s resources 60
6.1.3 C language and Assembler 60
6.1.4 The multitasking executive 61
6.1.5 Memory organisation 61
6.1.6 Single and Double Transfer Models 62
6.1.7 Means of communication 63
6.1.8 The test bench 64

6.2 REFINING THE MODEL 64
6.2.1 External memory assignments 64
6.2.2 Internal memory assignments 67
6.2.3 Tasks refining 68
6.2.4 Semaphores 69
6.2.5 The PP programs 70

6.3 CONCLUSION: THE EXECUTIVE-LEVEL DESCRIPTION MODEL. 70

7. THE IMPLEMENTATION STEP ...79

7.1 THE FOUR IMPLEMENTATIONS 79
7.2 IMPLEMENTATION AND FUNCTIONAL VERIFICATION 80
7.3 SPEED VERIFICATION 81
7.4 CHOSEN DESIGN SPEED ANALYSIS 83
7.5 CONCLUSIONS 86

8. CONCLUSIONS AND RECOMMENDATIONS ...87

APPENDIX A. SAR PARAMETER CALCULATIONS...90

APPENDIX B. THE FIR FILTERS ..94

APPENDIX C. THE SIMULATION...103

C.1 THE RAW&PRESUM DIRECTORY 103
C.2 THE PREFILT DIRECTORY 104
C.3 THE RAW_52 DIRECTORY 105
C.4 THE MATLAB DIRECTORY 105
C.5 THE TEST BENCH DIRECTORY 106

APPENDIX D. THE C80 PROGRAMS..107

D.1 THE PP C COMPILER BENCHMARK DIRECTORY 108
D.1.1 The source sub-directory 108
D.1.2 The include sub-directory 108
D.1.3 The obj sub-directory 109
D.1.4 The exe sub-directory 109

D.2 THE DD, DS, SD AND SS DIRECTORIES 109
D.2.1 The source sub-directory 109
D.2.2 The include sub-directory 110
D.2.3 The obj sub-directory 110
D.2.4 The exe sub-directory 111

 iv

LIST OF FIGURES

FIGURE 1: DFD SYMBOLS..13

FIGURE 2: V-MODEL OF OVERALL DEVELOPMENT CYCLE ...16

FIGURE 3: THE C80 BLOCK DIAGRAM..20

FIGURE 4: TMS320C80 SDB COMPONENTS ..22

FIGURE 5: PERFOMANCE OF THE PP C COMPILER..23

FIGURE 6: SIMPLIFIED SAR GEOMETRY, STRIPMAP MODE..27

FIGURE 7: SAR BLOCK DIAGRAM ...27

FIGURE 8: PHASE AND DOPPLER OF RETURNS FROM ONE POINT TARGET..... ERROR!

BOOKMARK NOT DEFINED.

FIGURE 9: THE AZIMUTH AND RANGE COMPRESSIONS ...32

FIGURE 10: THE CONTEXT DIAGRAM ..35

FIGURE 11: SINGLE-STAGE MODEL ..38

FIGURE 12: DUAL-STAGE MODEL ...39

FIGURE 13: VISUALISING THE EFFECTS OF QUANTISATION ...42

FIGURE 14: DUAL-STAGE MODEL INTERMEDIATE AND GLOBAL FREQUENCY

RESPONSES .. ERROR! BOOKMARK NOT DEFINED.

FIGURE 15: THE SINGLE (GREY) AND DUAL-STAGE MODEL FREQUENCY RESPONSES

...44

FIGURE 16: RAW DATA, MAGNITUDE ..49

FIGURE 17: TWO SITUATIONS IN RANGE SAMPLING...49

FIGURE 18: SIMULATION WITH FILTER RICE31 ...50

FIGURE 19: REFERENCE MATRIX ..51

FIGURE 20: FILTERING SIDE EFFECTS WITH A 31-TAP (LEFT) AND A 63-TAP FILTER 52

FIGURE 21: FOCUSED NON FILTERED AND FILTERED (‘RICE31’) RETURNS53

FIGURE 22: FILTERED AND AZIMUTH COMPRESSED DATA, COMBO FILTER..............54

FIGURE 23: DATA FLOW DIAGRAM, FUNCTIONAL LEVEL ...56

FIGURE 24: PRESUMMER FLOW CHART ..57

FIGURE 25: PREFILTER FLOW CHART ..57

FIGURE 26: THE DATA BLOCKS FILTERING STEPS (NUMBER 1 TO N) VERSUS TIME.62

FIGURE 27: THE INPUT-PRESUMMER DOUBLE BUFFER. ...65

FIGURE 28: THE PRESUMMER-PREFILTER CIRCULAR BUFFER66

FIGURE 29: THE INTERNAL PRESUMMER SINGLE BUFFER ..67

FIGURE 30: ONE OF THE FOUR INTERNAL PREFILTER BUFFERS68

FIGURE 31: DFD, TASK LEVEL..72

FIGURE 32: DFD, MP-PPS LEVEL ..73

 v

FIGURE 33: THE TASK TIMING DIAGRAM ...74

FIGURE 34: THE PRESUMMER TASK FLOW CHART ..75

FIGURE 35: THE INPUT PREFILTER TASK FLOW CHART ...76

FIGURE 36: THE PREFILTER TASK FLOW CHART..77

FIGURE 37: THE OUTPUT PREFILTER TASK FLOW CHART ...78

FIGURE 38: THE PRESUMMER THROUGHPUT, SD IMPLEMENTATION...........................85

FIGURE 39: THE OUTPUT THROUGHPUT, SD IMPLEMENTATION....................................85

FIGURE 40: ‘COMBO’ FILTER IMPULSE RESPONSE...96

FIGURE 41: ‘COMBO’ FILTER FREQUENCY RESPONSE ..96

FIGURE 42: ‘HAM15’ FILTER IMPULSE RESPONSE ..97

FIGURE 43: ‘HAM15’ FILTER FREQUENCY RESPONSE ...97

FIGURE 44: ‘HAM31’ FILTER IMPULSE RESPONSE ..98

FIGURE 45: ‘HAM31’ FILTER FREQUENCY RESPONSE ...98

FIGURE 46: ‘RECT31’ FILTER IMPULSE RESPONSE ...99

FIGURE 47: ‘RECT31’ FILTER FREQUENCY RESPONSE...99

FIGURE 48: ‘RICE31’ FILTER IMPULSE RESPONSE...100

FIGURE 49: ‘RICE31’ FILTER FREQUENCY RESPONSE..100

FIGURE 50: ‘RICE63’ FILTER IMPULSE RESPONSE...101

FIGURE 51: ‘RICE63’ FILTER FREQUENCY RESPONSE..101

FIGURE 52: ‘RICE81’ FILTER IMPULSE RESPONSE...102

FIGURE 53: ‘RICE81’ FILTER FREQUENCY RESPONSE..102

 vi

LIST OF TABLES

TABLE 1: BASIC SASAR 1 CHARACTERITICS..33

TABLE 2: AUXILLIARY SASAR 1 PARAMETERS...33

TABLE 3: BOTH MODEL ALGORITHM COMPLEXITIES...45

TABLE 4: INTEGRATED NOISE VERSUS FILTER...51

TABLE 5: THE FOUR IMPLEMENTATION THROUGHPUTS ...82

 vii

 LIST OF ACRONYMS

A/D Analogue to Digital

COTS Commercial-off the shelf

D/A Digital to Analogue

DD One of the four TMS320C80 implementations, see 7.1.

DFD Data Flow Diagram

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DS One of the four TMS320C80 implementations, see 7.1.

DSP Digital Signal Processor

DTM Double Transfer Model, see 6.1.6

FIR Finite Impulse Response

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

IIR Infinite Impulse Response

IPC Inter-Processor Communication

PP Parallel Processor

PRF Pulse Repetition Frequency

PRI Pulse Repetition Interval

 viii

MAC Multiply-ACcumulate

MIPS Mega Instruction Per Second

MOPS Mega Operation Per Second

MP Master Processor

MVP Multimedia Video Processor

RASSP Rapid Prototyping of Application Specific Digital Signal Processor

RISC Reduced Instruction Set Computer

RTOS Real-Time Operating System

SAR Synthetic Aperture Radar

SD One of the four TMS320C80 implementations, see 7.1.

SDB Software Development Board

SS One of the four TMS320C80 implementations, see 7.1.

STD State Transition Diagram

STM Single Transfer Model, see 6.1.6

TC Transfer Controller

TTM Time-To-Market

VC Video Controller

VHF Very High Frequency

VP Virtual Prototyping

VRAM Video Random Access Memory

1. Overview

 9

1. Overview

Digital signal processing is concerned with the representation, transformation and

manipulation of digitally represented signals. Today, digital signal processing

algorithms and hardware are prevalent in a wide range of systems, from high-volume

consumer electronics (e.g. facsimile, disk drives and car radios), through industrial

systems (e.g. robots and assembly lines) to highly specialised military applications

(e.g. satellites and rockets). In the next few years, the technology will allow the rise of

applications such as speech or handwriting recognition, video conferencing, adaptive

noise cancellation on automobiles and aircraft, adaptive vehicular suspension, to name

a few.

Along with the rising popularity and complexity of digital signal processing

applications, the system designers are now facing increased pressure to create

products quickly and inexpensively. Time-to-market (TTM) has become the key

factor in the success of these products in the competitive electronics marketplace. In

addition to rapid integration, the designers must bear in mind that, with continually

shifting technology and declining lifetime products, a design description is likely to

‘sit’ in different hardware solutions. In other terms, portability of design specifications

must be ensured, in order to improve detailed documentation, maintainability, and

rapid re-targeting of the implementation.

The use of commercial-off-the-shelf (COTS) products as hardware supports, and

conventional C language, for programming general-purpose digital signal processors

(DSP)1 can be seen as means to achieve reductions in overall development time.

1 The term general-purpose DSP is used here to differentiate the chip family from the
FPGA or ASIC families which can also be considered as digital signal processors.
However, we are using the abbreviation DSP all along the dissertation because it is
both more convenient and generally agreed as the term to name those processors.

1. Overview

 10

Equally, formal methodologies may be used to improve readability and

maintainability of quality solutions.

The main goal of this thesis is precisely to investigate the use of a methodology for

specifying, designing, and implementing DSP systems. The proposed formal

methodology, detailed in the next chapter, has been developed by J.P Calvez [1]:

characterised by a top-down and system approach, the development process starts

with the customer’s needs, and successively refines models and requirements to

finally obtain the implemented solution. As a case study, the design of a synthetic

aperture radar (SAR) digital preprocessor is attempted. The preprocessor is targeted

for the Texas Instruments’ TMS320C80 DSP. In other work linked to this project, the

same preprocessor was implemented by Grant Carter on a field programmable gate

array (FPGA) [2]. Along with the methodology, the thesis will investigate the various

tools and methods used to reduce the TTM. Furthermore, it will summarise the

difference and similarities encountered between programming a DSP and

programming a FPGA.

Thesis Outlines

The thesis is organised into eight chapters. A brief overview of each of them follows:

Chapter 2 introduces the framework for the design and implementation of the case

study. The development process is broken down into four steps: the Specification, the

Functional Design (Preliminary Design), the Implementation Definition (Detailed

Design) and the Implementation steps. These steps are detailed in the chapter, together

with the modelling graphs. Particular attention is put on the diverse methods used to

reduce the time spent for implementation.

The third chapter describes some hardware features common to DSPs, pointing out

their performance for signal processing applications. The chapter, among other things,

explains how the architectural diversity of DSPs leads to difficulties when one has to

choose the right processor for a specific job. Then, the chapter focuses on the Texas

Instruments’ TMS320C80 and its programming environment.

1. Overview

 11

Chapter 4 details the first step of the development process, the specification step. Prior

to the presentation of the case study is the necessary introduction to some radar

concepts.

Chapter 5 describes the functional design step in the development process. Finite

impulse response (FIR) design techniques are also described. Finally, the resulting

functional model is tested and the client requirements verified.

Chapter 6 discusses the implementation definition of the Preprocessor. The functional

model is refined here into a hardware-dependent model. The chapter is first structured

as a catalogue of the different technical solutions preferred. It finishes with memory

and task refinements.

Chapter 7 focuses on the implementation of the Preprocessor. The program

functionality is verified with the help of the test bench created during the functional

model simulation. Finally, the timing constraints set during the specification step are

validated and discussed.

The last chapter contains the conclusions drawn from the case study development

experience. Here, the advantages and limitations of the methodology and the methods

used during the implementation step, together with the differences between the

TMS320C80 and the FPGA solutions, are discussed.

2. Design Methodology

 12

2. Design Methodology

During the past decade, several different designing methodologies have been

developed, mainly because of the increasing TTM pressure and complexity of the

systems. A non-exhaustive list of these design methods follows:

• Object oriented methods: Object Orient Design (OOD [3]), Object Modelling

Techniques (OMT [4]), and Unified Modelling Language (UML [5]). Today, these

techniques are applied in data base and software applications. Most of the time, the

use of these methods is conditional on the possibility of using object-oriented

languages for software implementation.

• Structured methods: Structured Analysis and Structured Design (SA and SD,

[6]-[7]). Hatley-Pirbhai [8] and Ward-Mellor [9] have added real-time concerns to the

structured method. These are among the most popular methods used in the industrial

world (probably because they are the most ancient), especially for control and real-

time applications.

• Software-Hardware Co-Design Methods: This has been the hot design topic of

the past few years. Co-design aims at managing the heterogeneity of the systems to be

designed within an integrated design environment. Some techniques such as Virtual

Prototyping (VP), under the auspices of the Rapid Prototyping of Application Specific

Digital Signal Processor (RASSP) program, have started to show promising results.

However, they are still at development stage (e.g. VP needs the presence of

simulation models for every hardware components used in the prototype: these

models are still scarce in practice [10] and [2]).

The case study development process framework is greatly inspired by J.P. Calvez’s

methodology [1]. This formal methodology is ahead of most of the techniques

described above and facilitates the choice of the most appropriate to be used,

2. Design Methodology

 13

satisfying the imposed implementation constraints. Characterised by a top-down and

system approach, the methodology breaks the development into four steps:

specification, functional design, implementation definition and implementation steps.

This methodology was developed for electronic systems in the broadest sense of the

term. In the following sections, we will narrow the methodology scope down to digital

signal processing systems.

2.1 The Description Model

J.P. Calvez starts from the principles that any system can be observed, at any of the

development stages, by three complementary views:

• A spatial view: the spatial view describes the functionality of the system. A Data

Flow Diagram (DFD) is generally agreed upon as the standard diagram to use. The

symbols used in a DFD are presented in Figure 1. (For event-driven applications, one

can add to the DFD a Control Flow Diagram, see Hatley&Pirbhai [8]).

• A temporal view: it describes the behaviour of each function described in the

spatial view. Different models can be used here: software sequential codes can be

described with Flow Charts or description algorithms, hardware control loops with

State Transition Diagram (STD), concurrent tasks with Timing Diagrams, etc …

• An executive view: this is a description of the ‘executive’ support of the system,

in other words the hardware or the software components.

Figure 1: DFD Symbols

Time Discrete Data Flow
Time Continuous Data Flow

Event
Data Store

Terminator (Source or Sink)

Functions

2. Design Methodology

 14

Note that these views are quite similar to the functional, dynamic and object views in

the OO modelling technique.

2.2 The Development Process

As said previously the methodology is globally top-down: it starts from the customer's

problem to search for an appropriate implementation by successive approaches. Each

of the steps must produce a view of the system at the specific level. Specification,

functional design, implementation definition and implementation steps are described

below.

2.2.1 The Specification step

The specification step aims at defining a complete but purely external description of

the system to be designed, starting with the customer’s requirements. The

specifications are of functional (e.g. the system must filter the input data),

operational (e.g. the filter must run at 5 and 10 MHz) and technical natures (e.g. the

final product must be less than 10 cm long). The functional and operational

specifications are used in the functional design step, whereas the technological

specifications are only used in the implementation definition and implementation

steps. The description model of the system at specification level consists of a DFD,

called Context Diagram, together with the written functional, operational and

technical specifications.

2.2.2 The Functional Design step

The functional design step, or preliminary design, aims at defining the inner

specifications of the system in a complete but hardware-independent way. The

solution for this step is deduced from an analysis of the functional specifications.

First, a functional decomposition is carried out. The design process then consists of

2. Design Methodology

 15

successive refinements of the DFD until it can’t be further refined without hardware

assumptions.

For digital systems, the performance and quality of the selected algorithm, with the

specified data word length, chosen filters, and other design criteria, are tested at this

stage. In order to do so, a simulation of the process is performed.

The description model of the system at functional design level consists of a DFD,

together with Flow Charts or STDs (behavioural view).

2.2.3 The Implementation Definition step

The implementation definition step, or detailed design, aims at defining the system

completely. First, the functional solution is refined to take account of the technical

constraints described in the specification phase. Then, looking in particular at timing

constraints, hardware/software partitioning is performed. The hardware is specified by

an executive structure. The software part is then refined until the functions of its DFD

can be directly considered as software procedures, functions or objects.

The model at the implementation definition level gives a complete description of the

system. It contains fully detailed functional (DFD), behavioural (Flow Charts, Timing

Diagrams) and executive views of the system to implement.

2.2.4 The Implementation step

This step aims at constructing the product prototype. Implementation is inherently a

bottom-up process since assembly is not possible before components are available.

Therefore, implementation is started by making small subsets (and testing them), and

then gradually assembling and integrating them into more general functions.

The overall development process, consisting of a top-down approach for the design

process and a bottom-up approach for the implementation process, is often described

in methodology books as the V-model, Figure 2.

2. Design Methodology

 16

The implementation step is expensive in terms of time and resources. Its development

cost can be reduced by several means:

• The co-designing methods allow the simultaneous development of the hardware

and software implementations.

• The availability and “performance” of developing tools are of importance.

• Existing constituents should be use as often as possible. This strategy is called

reusability. Reusability for hardware has existed for several decades: very complex

components are available on the market for implementation. This point of view is

more recent for software, but it has already significant effects on the application

development cost. It consists of using third-party libraries, real-time executive, and

object-oriented programming methods.

Figure 2: V-model of overall development cycle

2.3 Conclusions

The chapter described the organisational framework that will be used for the

specification, design and implementation of our case study. This case study consists

of prototyping a SAR digital preprocessor on the TMS320C80 DSP. Prior to the case

study presentation is a description of DSPs in general and of the TMS320C80 in

particular.

Implementation
Specification

Functional
Design

Specification

NEED PRODUCT

Implementation and test

Integration and test

Acceptance and
Certification

2. Design Methodology

 17

3. The TMS320C80 DSP

 18

3. The TMS320C80 DSP

The chapter is divided into three sections. First, common hardware features in DSP

processors are overviewed. This section remains brief, and the reader may refer to

[11] and [12] for more detailed information. The second section focuses on the Texas

Instruments’ TMS320C80 and its features of interest for the development process of

the case study. In the third and last section, the hardware and software environment

accompanying the TMS320C80 is described in detail.

3.1 DSP Architectures: A Brief Overview

DSP processors are designed to support high-performance, repetitive, and numerically

intensive tasks. The two most commonly used signal processing operations are

filtering and computing the Fast Fourier Transform. Reducing their time cost has

greatly motivated the hardware features commonly found in DSP processors. These

features are:

• Multiply-accumulate (MAC) instructions can be performed in a single cycle. In

order to do so, an accumulator and a multiplier are integrated together in the data path.

• Several accesses to memory can be performed in a single instruction cycle. The

separation of data and program memories and busses characterises the so-called

Harvard architecture [11] (the Texas Instruments’ TMS320C10 uses a classic

Harvard architecture).

• Sophisticated address generation units are integrated in DSPs. Modulo-addressing

is used to simplify the use of circular buffers (e.g. the Lucent DSP16xxx) and bit-

reversed addressing, is used to simplify the implementation of certain FFT algorithms

(e.g. the Texas Instruments TMS320C5x family).

3. The TMS320C80 DSP

 19

• Hardware loops (e.g. the Analog Devices ADSP-21xx family) allow the

programmer to implement a for-next loop without adding any instruction cycles for

updating and testing the loop counter. This feature is very interesting for highly

repetitive inner-loops.

• The instruction and data caches are generally simpler than the ones used in

general-purpose processors.

• Serial/parallel I/O interfaces and specialised I/O handling mechanisms such as

low-overhead interrupts and direct memory access (e.g. the Motorola DSP563xx

processors provide a six-channel DMA controller).

In addition to these common features, DSPs can add diverse hardware capabilities:

strong support for multiprocessor designs (e.g. the Analog Devices ADSP-2106x

family), A/D and D/A converters (e.g. the Motorola DSP561xx family), or even

microcontroller-like features (e.g. the Motorola’s DSP568xxx family) are available

today. Moreover, new general-purpose processor architectures, such as the Intel’s

Pentium and the Integrated Device Technology’s R4650, are adding some signal

processing capabilities on chip.

Hence, comparing DSPs performance is not an easy task. None of the figures of merit

such as MIPS (mega instructions per second), MOPS (mega operations per second),

or even MMACS (mega multiply-accumulate instructions per second) can, alone,

characterise a DSP. In order to choose the right processor for the job, the system

engineer must also compare application needs and DSP capabilities on other factors

such as I/O data rate, dynamic range, cost, power consumption, and ease of

development, to name a few.

3. The TMS320C80 DSP

 20

3.2 The TMS320C80 Architecture

The TMS320C80 Multimedia Video Processor (MVP)1 is capable of doing up to 1.6

billion RISC-like operations per second at 40 MHz. The impressive performance of

the C80, even 4 years after its launch on the market, is due to the fact that the C80 is

actually not one processor, but 5. It contains four parallel processors (PPs) and one

master processor (MP) on one chip. In addition, the C80 has an internal Transfer

Controller (TC), 50Kbytes of SRAM connected to a crossbar switch, and a Video

Controller (VC). Figure 3 shows the architecture of the TMS320C80 [13] (the parts in

grey are the “processing elements”).

Figure 3: The C80 Block Diagram

The MP is a 32-bit RISC processor, with a floating-point unit [14]. The main function

of the MP, besides performing floating-point operations, is to act as a system

manager, controlling the four PPs and managing the interfaces to the outside world.

1 The TMS320C80 will be called the C80 all along the dissertation for the sake of
convenience.

3. The TMS320C80 DSP

 21

The PPs are 32-bit fixed-point DSPs and give to the C80 most of its computational

performance [15]. The Very Long Instruction Word (VLIW) technology allows the

PPs to perform up to 10 RISC-like operations in each clock cycle. They are generally

used to perform fairly simple operations at high speed. Each PP supports up to three

nested hardware loops.

Each of the five processors has one instruction cache and execute independently of

each other. The processors communicate via shared memory. The C80 contains 50

Kbytes of on-chip memory, divided into 25 blocks of 2 Kbytes. Each of the five

processors has five such blocks associated with it. The PPs have one instruction

cache, a parameter RAM block, and 3 data RAM blocks. The MP has 2 data cache

blocks, two instruction cache blocks and one parameter RAM block.

A crossbar network of switches allows the different processors to access each RAM

during each clock cycle, although only one processor can access any block in one

clock cycle. The MP is capable of up to two accesses per clock cycle (one instruction

fetch and one data/cache read/write), while the PPs are capable of up to three accesses

per clock cycles (one instruction fetch, one local data read/write and one global data

read/write).

The TC provides the interface between the C80 processors and external memory. It is

a very powerful DMA controller, servicing data and cache requests from all five

processors. It has a 64-bit interface to the C80’s crossbar and a 64-bit interface to the

outside world. TC operations involving the data RAMs are usually performed in

response to packet transfer request from the MP or PPs. Packet transfers provide a

number of different formats and options to allow flexibility in the movement of data.

A format of interest for the case study is the dimensioned transfer that allows several

two-dimensional patches to be transferred by a single packet transfer [16].

The VC peripheral is of no interest for our case study development process.

3. The TMS320C80 DSP

 22

3.3 The Programming Environment

This section presents the hardware and software environment that is used during the

implementation step. It includes the software development board, and software tools

such as compilers, debuggers and multitasking executive.

3.3.1 The Software Development Board

The software development board (SDB), in Figure 4 extracted from [17], is a PCI

plug-in card. The SDB includes a Windows NT device driver to enable

communications between the host and the C80. It contains a 40MHz TMS320C80,

8Mbytes of DRAM and a PCI host interface. In addition, the SDB includes 2 Mbytes

of video random-access memory (VRAM), the AD1848 audio CODEC and the

Philips chip set video digitizer/decoder.

Figure 4: TMS320C80 SDB Components

3. The TMS320C80 DSP

 23

3.3.2 The developing tools

• The code generation tools. The code generation tools package contains shell

utilities to compile, assemble, and link source files to create an executable object file.

The C80 has two compilers - one for the MP, one for the PPs. The former is quite

efficient (which is not surprising, as the MP is a RISC processor), the latter not really.

Indeed, as DSP architectures are fairly specific, it has always been difficult to develop

good C compilers for them.

As a benchmark, a filtering process is implemented on one PP, in both C and

Assembly (see Appendix D). It consists of a convolution between a 31-tap filter (8-bit

width) and a line of 4K values (8-bit width). It takes, with the assembly code, 1.7

microseconds for a PP to sample one value, 6.9 ms for the entire line. The chart in

Figure 5 shows the relative performances of the levels of C optimisation compared to

that of the Assembly code. The compiler package includes an optimization program

that improves the execution speed by simplifying loops, and rearranging statements

and expressions. (Note that the C code should follow certain guidelines if the

optimiser is used [18]).

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %

C o m p iled C

O p tim ise d C -le v e l 0

O p tim ise d C -le v e l 2

A sse m b ly

Figure 5: Perfomance of the PP C Compiler

The chart shows that the use of C, even if optimised, instead of Assembly, means

sometimes losing as much as a third of the C80 performance.

The code generation tools also contain the assemblers, which translate assembly

language source code into machine language object files. There are also two types of

assemblers, one for the MP one for the PPs.

3. The TMS320C80 DSP

 24

The linker is the third tool of the code generation package. Its job is to create

executable modules by combining the object files.

• The debuggers: The C and Assembly source debuggers help the programmer to

develop, test, and refine C80 C and Assembly language programs. There are two

types of debuggers: one for the MP and one for the PPs. Both types of debuggers use

the same DOS interface. Debugging a C80 application that runs on the five processors

means running and managing five different DOS windows, a task that can be tricky

and time consuming. The use of the parallel debugger manager (pdm), a command

shell from which the programmer can invoke and control multiple debuggers, eases

debugger management.

• SDBshell: SDBshell is a command-line interface that provides a basic set of

commands to access memory and registers of the SDB. It is possible with SDBshell to

load a C80 executable on the SDB and to read/write from/to the SDB DRAM.

3.3.3 The multitasking executive

The multitasking executive is an operating system running on the C80’s MP. It allows

several tasks to run concurrently on the MP. Basically a task is a program element of a

software project. To each task is allocated a “virtual processor”, i.e. a program

counter, a stack memory area and a stack pointer. As with any modern multitasking

software, this run-time environment takes care of the whole task management. Thus,

the transfer of processor control from one task to the other is transparent to the

application software programmer. The multitasking executive context switching is

constant, regardless of the number of tasks. It is equal to 114 clock cycles, 2.9 µsec

for a 40 MHz device [19]. Note that the multitasking executive is not in strict terms a

real-time operating system (RTOS) because not all the functions have a fixed

execution time for each operation performed, although most of them do. In addition to

the basics of any multitasking software, the multitasking executive provides a

software interface through which tasks on the MP issue commands to the PPs. The PP

3. The TMS320C80 DSP

 25

code is not in the least affected by the multitasking. Besides, inter-processor

communication (IPC) is also facilitated.

3.4 Conclusions

In this chapter, the diversity in DSPs hardware features has been exposed to the

reader. Then the C80, the SDB and its software tools have been described. The SDB

will be the hardware support for the case study implementation. The following

chapter, The Specification Step, describes the first step paving the way for the

development of the SAR digital preprocessor.

4. The Specification Step

 26

4. The Specification Step

This chapter begins the design of the case study. The specification step aims at

expressing a top-level and purely external view of the system, starting from the client

requirements.

The chapter is structured as follows:

First, basic concepts of Synthetic Aperture Radar (SAR) are introduced. This section

only focuses on the background that will be useful for the understanding of the case

study: the reader may refer to [25] for a more complete introduction to SAR. Then,

the client requirements are described. This is followed by a discussion on the system

functional specifications, together with the external inputs and outputs. Finally, the

Context Diagram, modelling the system at top-level, is presented.

4.1 Radar Background

4.1.1 SAR concepts

SAR techniques have been conceived to form high-resolution images of terrain.

Figure 6 shows the basics of SAR geometry. The platform, usually an aircraft or a

satellite, carries a side-looking radar antenna that illuminates the ground with a series

of electromagnetic coded pulses. The along track direction is called the azimuth

direction, while the distance from the aircraft to a point on the ground is known as the

slant range.

Once transmitted and received, the signal is split into its In_phase and Quadrature

phase components (the circulator in Figure 7 ensures that the signal follows the

correct path during transmission and reception). Following the complex

4. The Specification Step

 27

demodulation, the pulse is digitised. The data, a complex representation of the

sampled pulse in range, is finally stored.

Figure 6: Simplified SAR geometry, Stripmap mode

Figure 7: SAR Block Diagram

Q

PULSE
GENERATOR

COHerent
Oscillator

-90°

A/D

A/D

I

Range
Lines

Illuminated
Scene

Antenna Circulator

Ground

4. The Specification Step

 28

Some important SAR parameters are described below:

• Among the parameters of interest in the range direction are the Pulse Bandwidth,

B, and the sampling rate, fad. For a monochromatic pulse with length τp, the

bandwidth maybe approximated by:

Equation 1
p

B
τ
1≈

The Nyquist theorem imposes the sampling rate to be greater than B, or otherwise

aliasing would occur and ghost images would appear.

• Among the parameters of interest in the azimuth direction are the Doppler (or

Azimuth) Bandwidth and the Pulse Repetition Frequency (PRF). The latter, whose

inverse is the interpulse time (or Pulse Repetition Interval, PRI), is usually constant

for SAR applications. To derive an expression for the Doppler Bandwidth, we start

with the expression for the range to target:

Equation 2 222
0)(tvRtR +=

where ‘t’ is the time axis in the azimuth direction, t being zero at the closest approach

(i.e. t can be negative here). ‘v’ is the speed of the aircraft, and ‘R0’ the closest

approach range. The phase of the returned pulse at time t is:

Equation 3
λ

πθ)(4)(tRt =

where λ is the transmitted wavelength. The phase has a hyperbolic curvature as the

example in Error! Reference source not found. shows. The Doppler frequency (see

[21], p.68) is linked with the phase derivative by

Equation 4
dt
dR

dt
dtf D ⋅=⋅=

λ
θ

π
2

2
1)(

4. The Specification Step

 29

By combining Equation 2 and Equation 4 we have:

Equation 5 2
02

2

)()2()(

⎟
⎠
⎞

⎜
⎝
⎛+

××=

v
R

t

ttsignvtf D λ

An example of Doppler frequency can be seen in Error! Reference source not

found.. Note that the curve is not linear: in fact if the azimuth beamwidth were

extended, it would converge to the finite values λv2± . The range from the minimum

to the maximum existing Doppler Frequencies is called the Doppler Bandwidth, Bd.

Equation 6)()(minmaxmin_max_ tftfffB DDDDd −=−=

tmin and tmax are the times where the target enters and leaves the beam. They are given
by:

Equation 7
v

R
tand

v

R
t

azaz ⎟
⎠
⎞

⎜
⎝
⎛⋅

−=
⎟
⎠
⎞

⎜
⎝
⎛⋅

= 2
tan

2
tan 0

min

0

max

θθ

where θaz is the azimuth beamwidth. By combining Equation 5, Equation 6 and

Equation 7, we finally obtain:

Equation 8
λ

θ
⎟
⎠
⎞

⎜
⎝
⎛⋅

= 2
sin4 az

d

v
B

To satisfy the Nyquist criteria, the PRF must be bigger than Bd.

In many systems, the image formation is done on a ground station and not in real

time. It consists mainly of compressions in range and azimuth. Different methods

exist: one of them, the Range/Doppler Algorithm, is briefly described here:

• First, the data is range compressed through a classical method: matched filtering.

This consists of correlating the received pulse against the replica of the transmitted

pulse: in practice, the operation is often done in the frequency domain for efficiency.

The range-compressed data is generally filtered with a “window” which has the

property to decrease the sidelobe levels at the expense of spatial resolution. This

4. The Specification Step

 30

resolution is given by:

Equation 9
B
cKr winr 2_=δ

where c is the speed of light and Kr_win is a factor function of the window. A most

commonly used window is the Hamming window whose Kr_win is 1.3 [23]. If a

resolution of a few meters is to be obtained, a short monochromatic pulse of a few

tens of nanoseconds length, or a chirp pulse of a few microseconds length may be

used (see [20], §2.4, for chirp pulses).

• After range compression, corner turning and range curvature correction must be

performed to prepare the data for azimuth compression. The first operation is a simple

matrix transposition, the second corrects the effects of the so-called range curvature.

In fact, for a strip mapping SAR, the range to the target is function of the position of

the aircraft in azimuth. Its curvature, the range curvature, is hyperbolic and needs to

be flattened before azimuth compression with one- dimensional reference function.

• Finally, the azimuth compression, the operation that truly distinguishes SAR from

other radar, is performed following the range compression principles. Windowing is

also performed. The azimuth resolution, without multi-look processing (see next

section), is given by:

Equation 10
d

winazaz B
vK _=δ

Kaz_win being the factor function of the widow chosen to filter the data in azimuth.

Figure 9 shows the return of a point target before compression, after range

compression and after azimuth compression (the parameters for this simulation are in

Table 1, except that, for ‘aesthetic reasons’, the PRF and the azimuth beamwidth have

been set respectively to 52 Hz and 13°). In this example, the range curvature spreads

the signal over a hundred samples. The range sample spacing here is smaller than the

azimuth sample spacing, giving the impression that the target is spread in range.

For more information, Barber in [24] gives an excellent review of the processing

involved in digital imaging for SAR.

4. The Specification Step

 31

Figure 8: Phase and Doppler of returns from one point target

-954 -477 0 477 954 1430

-954 -477 0 477 954 1430

 Plane Location in Azimuth [meters]

4. The Specification Step

 32

Figure 9: The Azimuth and Range Compressions

14116

14178

14147

14209

R
an

ge
 [m

et
er

s]

14116

14178

14147

14209

R
an

ge
 [m

et
er

s]

14116

14178

14147

14209

R
an

ge
 [m

et
er

s]

14240

-954 -477 0 477 954 1430

-954 -477 0 477 954 1430

-954 -477 0 477 954 1430

Azimuth [meters]

4. The Specification Step

 33

4.2 Requirements

The processor is to be designed for the South African Synthetic Aperture Radar

SASAR 1. This is an airborne VHF SAR system whose principal characteristics are

noted in Table 1.

Table 1: Basic SASAR 1 Characteritics

Transmitted Pulse Monochromatic, 88 ns length
PRF Constant, 625 Hz

Carrier Frequency VHF, 141 MHz
Azimuth beamwidth 45º, Sinc shape
Elevation beamwidth 60º, Sinc shape

Beam Direction, azimuth 0º
Beam Direction (Look angle), elevation -30º

Platform Boeing, 246 m.s-1

The following characteristics are calculated from the ones above (the formulae and

calculations are in Appendix A:SAR Parameter Calculations):

Table 2: Auxilliary SASAR 1 Parameters

Maximum Range Resolution 13.2 m
Maximum Doppler Bandwidth 180 Hz
Maximum Azimuth Resolution 1.2 m

For SASAR 1, the number of samples per pulse is 2048. The problem is that with

such a rate, data storage becomes a problem. As the sampling in range is now fixed,

the idea is to reduce the sampled data rate in azimuth (effective PRF), with obviously

as little distortion in the data as possible. This is what constitutes the client needs. The

following paragraph links the client requirements to the specifications necessary for

the functional design step to begin.

4. The Specification Step

 34

4.3 From Requirements to Specifications

A decrease in the PRF forces the Doppler bandwidth to be artificially lowered in order

to meet the Nyquist Criteria. Hence, the first step is to establish a limit as to how

much the azimuth bandwidth and subsequentally the azimuth resolution can be

reduced. The azimuth resolution does not really need to be larger than the range

resolution, as it is often desirable to have in an image the same resolution in both the

horizontal and vertical directions. Therefore the minimum acceptable azimuth

resolution is 13.2 meters. The minimum azimuth bandwidth can now be calculated.

However, this calculation must take into account the mentioned concept of multi-look

processing.

Multi-look processing is a means to reduce image speckle at the expense of spatial

resolution. It uses azimuth bandwidth segmentation to create different images whose

linear summation will give the desired result (concerning the several issues involved

in the process, the reader is referred to [22] §5.2 and [25] §2-6.4). The number of

independent looks characterises the loss of azimuth resolution in this operation.

There are two independent looks for SASAR 1. The resulting minimum acceptable

azimuth bandwidth is 38 Hz. Thus, according Nyquist Sampling Criteria ([26] p.87),

the effective PRF has to be greater than 38Hz. The easiest way of bringing the PRF

down would be to sub-sample the collected data. Here, the sub-sample factor is

chosen to be 12, so that the effective PRF would be 52 Hz. It is chosen quite above 38

Hz in order to allow filtering and windowing to occur without any risk of aliasing.

More important, a 52 Hz rate satisfies the client requirement of being able to store the

data without overload.

The Preprocessor to be designed is placed after range compression (the range

compression on SASAR 1 is done in hardware), after the A/Ds, and just before data

storage.

4. The Specification Step

 35

4.4 Conclusion : Top-Level Description Model

The simplistic Context Diagram and the specifications derived from the client

requirements (of operational, functional and technical nature) are presented in this

section. They completely model the system at top level.

Figure 10: The Context Diagram

The operational specifications are:

• The Preprocessor input data arrives in packets of 2048 complex values at a rate of

625 Hz. The Quadrature and In-phase components of the complex value are each 8-bit

wide (dynamic range of the two A/Ds).

• The Preprocessor output data exits the system by packets of 2048 complex values

at rate of 52 Hz. The Quadrature and In-phase components of the complex value are

each 8-bit wide.

Functional wise, the Preprocessor’s job is to insure that aliasing does not occur while

sub-sampling the input data by twelve in azimuth.

Finally, the technical specifications stipulate to use, if possible, the TMS320C80 SDB

for implementing the Preprocessor.

Some comments on the system to be designed are presented below:

• As reader might have noticed, even if the received data arrives against a single

physical dimension, the time, they are always represented in a two-dimensional space

(see Figure 9). The two axes are the range or fast time axis, and the azimuth, or slow

time axis. The Preprocessor’s job will be to process and sub-sample in the slow time

axis, so one can already see that this will be our major real-time issue during the

implementation.

Output Data Input Data
Preprocessor

4. The Specification Step

 36

• The Preprocessor latency is not important here. Actually it does not really matter

if there are a few seconds between the moment the data is received by the antenna and

the moment the same data is stored in memory. However, the throughput of the

system is important: the Preprocessor must be able to handle the job at the desired rate

in any situation, or else data loss will occur.

The system top-level specifications have been exposed now. However, no internal

solution has been provided yet. This is going to be the focus of the next chapter,

which will describe, in a hardware-independent way, the internal functional and

behavioural models of the system.

5. The Functional Design Step

 37

5. The Functional Design Step

The first decomposition of the design is deduced from the client specification

analysis. In fact, in our case, two rough decompositions are first proposed, then

analysed and finally compared. During this comparison, we will describe why a Finite

Impulse Response filter will be needed, and we will give some FIR design techniques.

Then, after choosing the ‘best’ model of the two, successive refinements will be

carried out. The characterisation of the internal variables and of the events will be part

of the refinements. The functions that are updating these variables are then deduced,

together with the behaviour of each function. Finally, the DFD and the Flow Charts,

modelling the system at functional level, are drawn.

At one point of the design, the algorithm is validated through simulation. The latter is

implemented with C programs running under Linux and with Matlab functions. It will

help us to choose the filter and the created output results will serve as a reference

during the verification of the implementation.

5.1 Proposed Models

Two models are proposed here:

• The single stage model simply combines a low-pass filter and a sub-sample

process. Sub-sampling in azimuth brings the PRF down to a value close to the desired

one. The chosen sub-sampling factor is twelve, so the final PRF is approximately 52

Hz. But as the azimuth (or Doppler) bandwidth of the system (180 Hz) is bigger than

the desired final PRF, sub-sampling only will introduce aliasing effects. A traditional

low-pass filter, reducing the azimuth signal bandwidth to a value less than 52 Hz (but

5. The Functional Design Step

 38

greater than 38 Hz), is then combined with the sub-sampling process. In this case,

aliasing effects (i.e. ghosts images) are avoided.

Figure 11: single-stage model

• The dual stage model is a combination of an averaging block (the Presummer)

and a filtering block (the Prefilter). As the maximum azimuth bandwidth of the

signal is 180Hz and the sampling frequency 625 Hz, it is possible to sub-sample

directly the signal in azimuth by three (i.e. take one value out of three), leading to an

effective PRF of 625/3=208.33Hz. Sub-sampling by four would have introduced

aliasing (the effective PRF would be 157Hz). But in fact, instead of simply sub-

sampling, the dual stage method proposes an averaging solution: the latter offers a

signal to noise ratio improvement.

But presumming alone does not fulfil the client requirements. Therefore, in order to

obtain the required effective PRF, a combination “low-pass filter/sub-sampler”, whose

behaviour is similar to the single stage model behaviour, is cascaded after the

Presummer. With a sub-sampling factor of four for the second block of the dual stage

model, the overall dual stage model throughput is the same than the single stage

model one.

Please refer to Appendix A, in the Presummer/Prefilter operations section, for

calculation details.

Output Data
Az Bandwidth 50 Hz

PRF 52 Hz

Input Data
Az bandwidth 180 Hz
PRF 625 Hz

Low-pass Filter
&

Sub-Sampler x12

5. The Functional Design Step

 39

Figure 12: Dual-stage model

Both models fulfil the client requirements: they must be analysed in more depth and

be compared so that one of them could be chosen for the Implementation step.

However, before proceeding with the analysis, a discussion on FIR filtering is

warranted.

5.2 Filter Design

A study applicable to both models is described below, explaining why linear-phase

FIR filters are the best numerical low-pass filters for our application and describing

how to calculate FIR filter coefficients.

5.2.1 The phase aspect

As the image formation from raw SAR data needs accurate phase measurements, the

ideal filter should have a zero-phase response in the desired frequency band. But zero-

phase filters do not exist, for any “real life” system has to be causal (see [26], p.204).

Therefore, some phase distortions are inevitable: in our situation, a linear-phase

response would be the best, as this results in only a translation of the SAR image,

without degrading the focusing performance. A linear phase response is indeed

Low-pass Filter
&

Sub-Sampler x4

Summer
&

Sub-Sampler x3

Input Data
Az bandwidth 180 Hz
PRF 625 Hz

Presummed Data
Az Bandwidth 180 Hz

PRF 208.33 Hz

Output Data
Az Bandwidth 50 Hz

PRF 52 Hz

5. The Functional Design Step

 40

similar to a delay in time domain, and as the system latency is not really a problem,

the delay distortions can be considered as inconsequential.

The whole digital filter family is made up of two subsets: the Infinite Impulse

Response (IIR) filters and the Finite Impulse Response (FIR) filters. Only the latter

can have an ideal linear-phase response. The operation of a FIR filter may be

expressed as:

Equation 11 ∑ −

=
−−×=⊗= 1

0
)1()()()()(N

n
nNhnxnhnxny

where h is the filter to be designed, x the input of the filter, y the output, N the filter

length (or filter number of taps) and n the representation of the sampled time.

The linear phase constraint imposes to the low pass filter to be symmetrical i.e.

)1()(nNhnh −−= (see [26], p.251).

5.2.2 Coefficient calculation

The calculation of the FIR filter coefficients may be done via numerous design

methods. In brief, one can say that the finite number of coefficients in a low-pass FIR

filter introduces two side effects in the frequency domain. First, the cut-off frequency

slope is far from infinite and second, the passband and stopband are not flat. The more

these side effects have to be reduced, the longer the filter required. Similarly, if the

filter length is set, the design of the “best filter” often consists of finding a good

balance between ripples (band flatness) and width of the transition band.

There are two popular approaches for designing FIR filters. The first is the windowing

method: very intuitive, it applies a window on the ideal desired time response in order

to obtain a finite number of coefficient [26] §7.4. Windowing often gives good results

but the method is empirical and does not offer individual control over the

approximation errors in the different bands. The Kaiser window and the Hamming

window are among the most commonly used windows.

5. The Functional Design Step

 41

The second approach uses “optimum” techniques. The idea is to minimise the error

between the desired frequency response and the real-value amplitudes in the

frequency domain. Two definitions of the approximation error exist: the weighted

integral square error (or L2) and the weighted Chebyshev error [28].

Algorithmic techniques and today’s computational performances are the reasons why

the “optimum design” is achievable. Among today’s common algorithms are the

linear Parks-McClellan or the Remez exchange algorithm [27].

5.2.3 Filter designing tools

The calculation of filter coefficients is greatly facilitated by today’s designing tools.

Four commercial or academic tools are:

• Rice University Matlab programs: The Rice University Digital Signal Processing

Group has developed a set of Matlab routines for some optimum techniques, one

concerning the Constrained Least Mean Square Method [28]. The programs are

available at http://www-dsp.rice.edu/software.

• The Matlab Signal Processing toolbox contains some FIR Filter design routines,

using both windowing and optimum techniques.

• Qed: developed by Synopsys and part of the COSSAP package. Qed is a complete

software tool, with a friendly user interface. It is, among other things, possible to

visualise the filter step response, zeros and poles, group delay, etc…

• ScopeFIR. This shareware, similar to Qed (although less complete), has been

developed by Iowegian International Corporation and is available at

http://www.iowegian.com.

Four parameters are required by these software tools: The stopband and passband

edge frequencies (some programs would simply require a cut-off frequency), and the

stopband and passband ripples.

5. The Functional Design Step

 42

5.2.4 Filter quantisation effects

As the data is 8-bit wide, it is first natural to consider using coefficients with the same

width, since this would permit the use of fixed-point hardware devices and would

facilitate the implementation stage. Unfortunately, all the software tools presented

above return floating-point coefficient filters. A float-to-signed-char quantisation

would then be required and the impact of this on the magnitude response in the

frequency domain must be evaluated. Figure 13 shows the frequency response of a

filter, designed for the dual stage model, before and after quantisation. The difference

in the passband and the transition band is not visible. In the stopband, the magnitude

difference is of a maximum of 3 dB around -40 dB. The 8-bit quantisation can

therefore be considered as acceptable for the application.

Figure 13: Visualising the effects of quantisation

Filter with floating
point coefficients

Filter with 8-bit
wide coefficients

5. The Functional Design Step

 43

5.3 Analysing models algorithm

5.3.1 The Presummer/Prefilter frequency response

The dual stage model consists of the Presummer cascaded with the Prefilter. Both

blocks contribute to the dual-stage model frequency response. Figure 14 shows the

frequency response of the Presummer, the Prefilter, and the resulting dual stage model

(recall that the model response for frequencies higher than 90Hz is not interesting as

the highest data frequency component 90 Hz). The frequency cut-off is set to 22 Hz (a

bit less than half the bandwidth, so that the cut-off slope effect, see 5.2.2, can be

compensated). As the Presummer frequency response is close to the unity, the dual-

stage model frequency response and Prefilter frequency response are very similar.

The only small noticeable difference is that the stopband ripples are reduced. The

theoretical shortcut taken previously saying that the Presummer by three is not more

than a sub-sampling process improving the signal to noise ratio (Section 5.1) is

therefore quite a good approximation (A larger presum value would give more

noticeable difference).

Figure 14: Dual-stage model intermediate and global frequency responses

Presummer

Prefilter

Presummer &
Prefilter

5. The Functional Design Step

 44

5.3.2 Comparing the model frequency responses of both models

In this section, we have chosen a 31-tap low-pass FIR filter fulfilling the dual-stage

model Prefilter requirements (the filter has not been chosen completely arbitrarily: it

is actually ‘RICE31’, whose coefficients are present in Appendix B: The FIR Filters).

In the single stage solution, the filter, in order to have the same characteristics as the

Presummer-Prefilter frequency response, would have to be approximately 81-taps

wide (‘RICE81’, see Appendix B). The comparison between the model frequency

responses for both models is now possible. We can see from Figure 15 that the

difference is minimal: in the passband and transition band, the performance of the two

models is very similar. In the stopband, the peak levels are nearly the same, around -

40 dB; the integrated sidelobe levels (i.e. the integrated sidelobes over the integrated

main lobe) are also similar, around -53 dB. This frequency performance offers no

clear better solution. For implementation, an important parameter is the complexity of

each algorithm. An approximate calculation of the complexity of each model is

examined next.

Figure 15: The Single (Grey) and Dual-Stage Model Frequency Responses

5. The Functional Design Step

 45

5.3.3 Refining the Presummer and Prefilter models

The calculation of the algorithm complexities requires that the models be refined.

In the single stage model case, the sub-sampler is logically placed after the low-pass

filter, since no aliasing should occur during the sub-sampling stage. The low-pass

filter would produce one range line at a rate of 625 range lines per second and the sub-

sampler would simply keep one line out of 12. However, it is wasteful to produce 12

range lines when only one is useful (Note that the latter statement is only true because

we are not using an IIR filter, but a system that does not contain any feedback).

Moreover, merging the two blocks is very intuitive and simple. The filter would wait

until twelve new input range lines are available. Then it would produce one range line

and wait for twelve other range lines to come, etc… By proceeding as such, we are

saving a huge amount of processing time while producing exactly the same results as

before.

The dual stage model is refined following the same principles: in the Presummer, the

averaging process and the sub-sampler are merged while in the Prefilter, the low-pass

filter and its associate sub-sampler are also merged in a similar manner to the

refinement of the single stage model.

5.3.4 Comparing both model algorithm complexity

This refinement allows us now to compare the algorithms of both approximated

models. The calculation remains simplistic as the hardware is still unspecified at this

stage: the comparison is only done on the number of mathematical operations used for

producing one value. The filters used for the calculation are the ones used in 5.3.2.

Table 3: Both Model Algorithm Complexities

 Number of multiplication Number of additions
“One filter” (1st model) 81 80

Presummer/Prefilter 0 + 31 2*4 + 30

5. The Functional Design Step

 46

The Presummer-Prefilter (dual stage) solution uses less than half of the mathematical

operators used by the single stage filter solution.

The figures above should be interpreted with care. It is not said here that if both

models were implemented on the same hardware device, the single stage model would

be twice slower than the dual stage model. There are too many unknown parameters

to do a proper relative comparison (e.g. the timing overhead due to internal

communication latencies, which are probably bigger for the dual stage model, cannot

be approximated without a strong understanding of the hardware and eventually the

operating system used). But despite that, the “data processing” nature of the system

and the important difference between the algorithm complexities of both models

motivate our belief that the dual stage model implementation will be the fastest.

The Presummer-Prefilter is then chosen to be the model to implement.

5.4 Algorithm validation: simulating the Preprocessor

5.4.1 The simulation set-up

The chosen model low-pass filter remains to be designed. Choosing the “best” filter

by simply visualising its frequency response is very subjective: no one really knows

when parameters such as transition band width and ripple levels are good or well-

balanced enough. Therefore, in order to have a better knowledge of the quality of the

filter, a simulation was set up. The latter consists of the following steps:

• The input data is created with SARSIM2, a radar simulator written by Rolf

Lengenfelder[29]. The SARSIM2 radar and platform (i.e. the aircraft) parameters

follow the SASAR1 specifications. The target is a point located at a ground range of

10 kms from the platform; the input data is range compressed. The full script file for

SARSIM2 is in Appendix C: The Simulation. The resulting data is a 2048×29765

(Range×Azimuth) matrix of complex values. Each Q and I part of the latter is

represented by an unsigned character.

5. The Functional Design Step

 47

• The input data is then presummed and prefiltered. But before this operation, the

data matrix (range line vs. azimuth line) must be transposed, or corner turned, as the

filtering process is done in the azimuth direction. In addition, the Presummer and the

Prefilter must work on signed data, so the 128 offset must be removed prior to any

processing. Here, existing C routines have been used: all of them were written by

Jasper Horrell[30].

• Also required for the evaluation is a Reference matrix whereby the client

requirements are ideally and artificially fulfilled. SARSIM2 is again used for the

purpose. The PRF is brought down to 52 Hz, and the azimuth beam width is narrowed

down to 13 degrees, so that PRF and Doppler bandwidth respect the Nyquist criterion.

The other SARSIM2 parameters remain the same as the ones used for the input data

creation. But some processing remains to be done, as the antenna gain pattern, a sinc

function, leaves us with undesired returns outside the 13 degrees beam width. A

Matlab routine was written to read the SARSIM2 file, corner turn the matrix, and set

these undesired returns down to zero (The number of range lines within the new beam

width has been calculated in Appendix A).

• The Filtered and the Reference magnitude matrices are subtracted. Prior to the

subtraction operation, both matrices are normalised and interpolated in range and

azimuth (the interpolation factor was chosen to be 2 to prevent aliasing when moving

from a complex matrix to its magnitude). The “difference” matrix absolute

integration, called from now on the Integrated Noise, will be our chosen criterion for

the best filter selection. This information extraction is done under Matlab (See

Appendix C).

5.4.2 The simulation results

In the next paragraphs, the results obtained with the simulation are discussed.

• Figure 16 shows the relevant 128 range bins in the raw data matrix after corner

turning. The grey colour scale, ranging from white (lowest value) to black, represents

the magnitude of the signal. The range curvature here is quite severe (approximately

5. The Functional Design Step

 48

100 range bins). This affects the preprocessing as the latter has been conceived with

the hypothesis that the pulse returns are sitting in the same range bin. The simulation

should be able to show precisely what the effects of the range curvature on the

preprocessing are.

The overall shape of the graph shows bigger magnitude values when approaching the

middle azimuth sample. On close inspection, the darkest spots do not appear in the

middle, but are actually located in the areas where the returns are migrating from one

range line to the other. The global shape can easily be explained. The varying

parameters on which depends the magnitude of a pulse return are the distance to the

target and the antenna gain pattern. They both contribute to strengthen the closest

approach points. The darkest spots are due to sampling in the range direction. Already

range-compressed, the continuous signal for each range line would be a triangular

function (correlation between two rectangular shapes). Figure 17 shows the sampling

of two slightly displaced triangular functions, the range sampling rate being, as in the

simulation, barely above the Nyquist rate. For the most common case, the left one, the

triangular function is represented by two relatively equivalent samples. In the image

then, two points would appear in the range line. In some cases however, as the right

chart is showing, the pulse would be represented mainly by one sample approaching

the maximum value of the triangular function, the other samples being a lot weaker.

In these cases one very dark spot would appear on the image.

5. The Functional Design Step

 49

Figure 16: Raw Data, Magnitude

Figure 17: Two situations in range sampling

• Figure 18 shows the magnitude of the data after preprocessing using the filter

‘RICE31’ (‘RICE31’, filter used in Figure 13, Error! Reference source not found.,

and Figure 15, is described in Appendix B). As expected, low pass filtering consists of

artificially narrowing down the azimuth beam width: this is due to the fact that the

low-frequency components of the spectrum sit on the central region of the graph, i.e.

around the closest approach point.

0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

R a n g e

M
ag

ni
tu

de

0

1 0

2 0

3 0

4 0

5 0

R a n g e

M
ag

ni
tu

de

5. The Functional Design Step

 50

• The Reference matrix, Figure 19, looks pretty similar. The only “visual”

difference is the presence, in the filtered data of Figure 18 outside the narrow beam

width, of small residues. The latter quantification will serve as the criterion for the

choice of our best filter.

• The Integrated Noise is calculated. This process is repeated over for a series of

filters that are described in Appendix B. The best result is obtained for the filter

‘RICE31’, a 31-taps filter designed with a Matlab program developed by Rice

University [28]. The other results, normalised with the ‘RICE31’ filter and converted

into dBs, are presented in Table 4.

Figure 18: Simulation with Filter RICE31

5. The Functional Design Step

 51

Figure 19: Reference Matrix

Table 4: Integrated Noise versus Filter

FILTERS COMBO HAM15 HAM31 RECT31 RICE31 RICE63
Integrated
Noise (dB) 9.57 1.51 0.51 3.22 0 1.66

The first thing to note is that apart from the ‘COMBO’ and the ‘RECT31’ filter, the

results are pretty similar. The ‘COMBO’ filter is a simple filter whose four

coefficients have unit values. Associating the ‘COMBO’ filter with the Presummer by

three is equivalent of averaging and sub-sampling by twelve. Both the ‘COMBO’ and

the ‘RECT31’ filters (a 31-taps filter designed with a rectangular window) have very

high level sidelobes, which is the reason why the Integrated Noise result is not good.

Among the 31-taps filter, the expected hierarchy is respected: the choice could have

been done just on the look of the frequency responses. The major “surprise” is the 63-

taps filter result: ‘RICE63’, whose frequency response looks the “best”, does give a

poorer result than ‘RICE31’.

5. The Functional Design Step

 52

The proposed explanation for this result is described here. Let us imagine a vector of

100 values, containing a rectangular shape of 20 values in its middle. Figure 20 shows

the signal filtered by ‘RICE31’ and ‘RICE63’. After the convolution the rectangular

signal is spread onto N-1 more samples, N being the filter length. This spreading

occurs not just one time in our case study but twice in a hundred of range bins (see

Figure 16). These side effects are all contributing to the increase of the Integrated

Noise. Up to 31 taps, they have been counterbalanced by the filter frequency response

improvement. A 63-tap filter is already too long.

It can be noted that the 15 taps filter does not give such bad results: so if the

application happens to run too slowly, the use of ‘HAM15’ in the dual stage model

could be considered to save processing time. But for the moment, ‘RICE31’ is the

chosen filter.

Figure 20: Filtering Side effects with a 31-tap (left) and a 63-tap filter

The complete validation of the model still requires a comparison between the filtered

result and the ideal one. Figure 21 shows two sets of data that are fully focused, i.e.

the range curvature and azimuth compression processes described in 4.1.1 are applied

(the C routines were written by J.Horrell [30]). In the first graph, the point target

return is not filtered before azimuth compression. In the second graph, the data is

Presummed, Prefiltered (with ‘RICE31’), and azimuth compressed (Note that, in order

to have a better picture, all the points in Figure 21 that had a value less than –60 dB

were set down to –Infinity). Visually, the two results are very similar. When

5. The Functional Design Step

 53

comparing only the azimuth line containing the maximum return of each graph, the

results are again the same. This comparison shows that, despite a severe range

curvature, filtering along the azimuth line does not cause strong changes in the

focused image. This is true only if the filter is not too long and if its frequency

response is correct. As an example, Figure 22 shows the consequences of the use of an

overall Presummer by twelve. The high sidelobes creates aliasing and, although weak,

some ghost returns appear in the image.

The simulation has been important to validate the model. It has also provided a filter

and quantified the effects of range curvature when filtering. Finally it has created the

input and output data that will be used during the implementation step.

Figure 21: Focused Non Filtered and Filtered (‘RICE31’) Returns

5. The Functional Design Step

 54

Figure 22: Filtered and Azimuth Compressed Data, COMBO filter

5.5 Model Refinements

The data width and real time considerations, proposed in this section, are necessary to

the elaboration of the system functional modelling.

5.5.1 The data width consideration

The Presummer is adding three 8-bit data to form the output. Considering that the

input data is using the full 8-bit scale, the number of possible values that the output

can take is 28×3. So, if scaling and precision loss are to be avoided, the output must be

at least 10-bit wide. If the storage capacity cannot handle this memory overhead, a

divider by 3 must be put after the averaging function. It would add some timing

overhead and would introduce a loss in data precision (e.g. if the input is a unit

impulse, the output without the divider would produce three ones, while the output

with the divider, and the 8-bit cast, would produce only zeros). For the Prefilter, the

output range is 28×3×∑
=

N

i

ih
1

)(, with ∑
=

=
N

i

ih
1

867)(for ‘RICE31’. So, after the

convolution, the data must be at least 20-bit wide. In order to have an 8-bit output

stream (a client requirement) and a maximum achievable dynamic range, the data

5. The Functional Design Step

 55

must be divided by 3×867=2601 before truncation. This results in an inevitable

precision loss which consequences have already been taken into account during the

simulation (i.e. in the simulation, the precision loss after Presumming is null, and its

only after the Prefiltering that the data is truncated down to 8-bit values).

5.5.2 The real-time consideration

The main consideration that will be discussed in this section is how to implement the

corner turning into a real time process. The corner turning simply transposes the data

matrix to facilitate the filtering operation. However, in real-time, the data is received

and processed continuously. As an example, the Presummer needs to wait until after

the first 2 range lines and the first value of the third range line arrive before producing

the first output value. Thus, data storage facilities will be needed within the system.

For the Prefilter to work, 31 presummed ranges lines must also be temporary stored.

Note that the dual stage model, already preferred in 5.3.4, is also advantageous when

the amount of data to store is considered.

5.6 Conclusion: Functional-level Description Model

In order to model the system, two types of diagrams are used: DFD and Flow Charts.

The DFD is modelling the functional structure of the system while the Flow Charts

are describing the elementary bubble-functions of the DFD.

The DFD at functional level is in Figure 23. The transfer of the input data to the first

storage facility is performed by a function that we named the Receiver. This Receiver

then signals the Presummer, through Event1, that new data have arrived at

Data_Store1. Similarly, the Presummer is sending its results to Data_Store2 and

signalling the event to the Prefilter through Event2. Event1 and Event2 are the means

of synchronisation between the blocks. Practically, these events could be control

signals in hardware or task messages in software. The final scaling operation is

incorporated in the Prefilter. The self-explanatory Flow Charts in Figure 24 and

5. The Functional Design Step

 56

Figure 25 provide the dynamic behavioural modelling for the two Presummer and

Prefilter functions (the Receiver function is trivial at this level).

In this chapter, the system internal model has been decomposed, and the deduced

algorithm has been tested and validated. Finally, the functional modelling has been

exposed. However, the model description is very general, as the hardware is still not

specified. In the next chapter, the physical support for the application will be verified

and the hardware-dependent refinements will be described.

Figure 23: Data Flow Diagram, Functional Level

Event2

Event1

Presummer

Prefilter

Filter ‘RICE31’

Receiver

Input Data

Output Data

Data_Store1 (8-bit)

Data_Store2 (10-bit)

5. The Functional Design Step

 57

Figure 24: Presummer Flow Chart

Figure 25: Prefilter Flow Chart

Read 31 lines from Data Store 2
Filter Data

 Event 2

IDLE: Wait

Send Data Out

Normalise Results
Add Offset

 Event 1

IDLE: Wait

Get Data from Data Store 1
Remove Offset

Sum Data
Put Data to Data Store 2

Increment Number of Summed Lined (NSL)

Send ‘Event 2’

YES

NO
Check NSL: can the

Prefilter start its
Work?

6. The Implementation Definition Step

 58

6. The Implementation Definition Step

The aim of the implementation definition step chapter is to define the Preprocessor

completely at “executive” level, starting from the functional model of the previous

chapter. The chapter is structured as follows:

First, the use of the C80 SDB as the hardware support is justified. All the different

technical choices are exposed: the use of C, the multitasking executive, the memory

organisation, the transfer models, the means of communication and the test bench.

Following this, the refinements leading to the software code are described. Finally, the

DFD, the timing diagram and the Flow Charts, modelling the system at task level, are

drawn.

6.1 The different design choices

6.1.1 Choosing the C80

The C80’s SDB capacities are compared against the application specifications on the

following points:

• Data width. The C80 can support the data width requirements: 8-bit and 16-bit

operations are possible. The fixed-point nature of the device will not cause any data

loss if 16-bit data is used during the prefiltering stage.

• Storage capacity. The C80 internal memory capacity, although quite big when

compared to other DSPs, cannot handle the storage of many range lines at a time.

Therefore, at each stage of the process, i.e. before and after the Presummer and the

Prefilter, the data has to transfer from/to external memory to/from internal memory.

The SDB external memory (8 Mbytes of DRAM) can support the application needs.

6. The Implementation Definition Step

 59

• Speed Requirements. The best way to prove that the C80 is able to fulfil the

processing speed requirements is to directly write its most time consuming part, i.e.

the two averaging (presumming) and convolution (prefiltering) inner loops. These

inner loops are targeted for the PPs (see next section). The first program to be written,

‘average_c’ (18 lines of code), removes the 128 offset to the unsigned 8-bit data

located in an internal buffer and averages them. The second program, ‘convol_c’ (25

lines of code), convolves the 16-bit data located in an internal buffer with ‘RICE31’,

divides each result by 2601, inserts the 128 offset back and scales the output down to

8-bit. The convol_c program, compiled with an optimisation level 2, takes 4.11

microseconds to process one value, and would therefore take 16.86 milliseconds to

process one presummed range line. This value is close to the client requirements (19.2

milliseconds), but assigning the prefiltering work to two PPs instead of one would

virtually divide the overall time to process one presummed range line by two. The

averaging function performance in terms of speed is strongly under the client

requirements (1.09 versus 4.8 milliseconds).

• Data Transfer. The time spent for transferring data is also estimated. There is at

least, for each line produced, twelve input and 31 presummed range lines to be read,

four presummed and one prefilted range line to be stored. With a transfer rate of two

and three clock cycles for a write and read operation respectively, and with a 64-bit

wide data bus, the minimum time required for transfer is 3 milliseconds. This result,

compared against the 19.2 milliseconds PRI, indicates sufficient performance. Note

that the total amount of time necessary for processing and transferring the data is not

the sum of the two individual times: recall that the C80’s TC, in charge of the transfer,

and the PPs are working independently.

After having compared the different client requirements with the C80 capabilities, it

has been decided to use the DSP and its board as the hardware platform for the case

study.

6. The Implementation Definition Step

 60

6.1.2 The appropriate use of the C80’s resources

The TC, the MP, and the PPs are the main “active” C80 resources. They will be used

in a classical way for the application, i.e.:

• The MP will have to supervise the PPs work and formulate the data transfer

requests to the TC.

• The PPs will have to perform the “time consuming” part of the work: the

convolution and the averaging inner loops. In the light of the inner loops timing

results, one PP is assigned for the presumming work, two for the prefiltering.

• The TC will issue the data transfer requests.

The work assigned to the processing elements, in particular the work assigned to the

MP, will be described in more details all along the following sections.

6.1.3 C language and Assembler

The advantages of using the C language instead of native Assembly are the following:

• Increase of programmer productivity

• Maintainability

• Portability of the code

But Assembly remains useful for time-critical performance, as the PP compiler

performance study in 3.3.2 has shown. Thus, even thought the program will be first

written in C, with the use of the optimiser, one must bear in mind that some

computing time could be save by writing inner loops, such as the convolution used for

prefiltering, in Assembly.

6. The Implementation Definition Step

 61

6.1.4 The multitasking executive

The use of multitasking executive is quite appropriate for our application: the

Presummer and the Prefilter can be written and verified independently. Moreover,

they can be easily pipelined with the help of the multitasking executive (pipelining

helps to increase the system throughput).

Using the multitasking executive encourages the programmer to write the most of the

code under the MP (Recall that the multitasking executive only runs on the MP). For

example let us consider the transfer requests case. A PP cannot run concurrent tasks,

so if it is issuing a transfer request whose completion is necessary for the continuation

of the sequential code it can do nothing but wait for the data to arrive. On the

contrary, if a task under the MP is waiting for data transfer completion, the

multitasking executive kernel automatically switches to another task, so the MP is

fully used and time is not wasted. Therefore, we will leave only the very few

compute-intensive parts to be done by the PPs, while writing most of the code under

the MP (Presummer and Prefilter synchronisation, data transfer management and PP

supervision).

6.1.5 Memory organisation

Static Allocation. The internal and external memory spaces are shared between the 5

processors, which simplifies the programming model. However, this can lead to

memory contention and data security problems. Therefore, static allocation has been

chosen. In that case, the memory spaces are disjointed (this is the so-called mutual

exclusion concept. For more information, please refer to [31]) and allocated at

compile time i.e. the different data, code and variable storage spaces are defined

statically in the “include files” and at link stage.

Program Memory. The classical approach is to leave the program code in off-chip

memory: this would not lead to excessive timing overhead as the C80’s processors,

i.e. the MP and the four PPs, have each 2Kbytes of instruction cache.

6. The Implementation Definition Step

 62

Data Memory. Most of the internal memory should be dedicated to the buffers used

for processing data. For the PPs, the program global and static variables together with

the stack are also allocated in internal memory. For the MP, on the contrary, these

variables are allocated in external memory: the timing loss should not be excessive, as

the MP possesses 2Kbytes of data cache.

6.1.6 Single and Double Transfer Models

Double transfer and single transfer models are two solutions for processing data that

resides in off-chip memory:

• The single transfer model (STM), very common in the DSP world, consists of (i)

transferring a block of data from off-chip memory to an on-chip buffer, (ii) computing

the data, and (iii) sending them back to off-chip memory. The STM is repeated as

many times as necessary.

• The double transfer model (DTM) uses two internal buffers (see [15], §12-23).

While the first one is processed, the C80’s TC “discharges” and “recharges” the other

one. Then, the buffers are swapped, the first one assigned to the TC, the second one to

the PP. Figure 26 shows the repeat of the double buffering process over N times. After

initialisation, while the block number N-1 is processed, the block number N-2 is

transferred out and the block N transferred in.

Time 1 2 3 4 … N+1
Input data block nº 1 2 3 4 … N+1
Compute block nº 1 2 3 … N

Output block nº 1 2 … N-1
The grey parts are non-available space times

Figure 26: The Data Blocks Filtering Steps (number 1 to N) versus Time.

6. The Implementation Definition Step

 63

Neither of these two methods is, on first inspection, preferred: on one hand, if the

STM were used, the processing element(s) would do nothing during the transfer stage,

which is a loss of computational time for the C80. On the other hand, it is not certain

that the DTM is efficient when implemented under the MP. Indeed, multitasking and

double buffering force one to split the Presummer or the Prefilter functions into three

small tasks: one for transferring the data in, one for computing the data, and one for

transferring the data out. Therefore, a timing overhead due to inter-task

communication and task context switching is observed.

So the two methods for both the Prefilter and the Presummer are implemented. The

timing results and the proposed explanation for them are in Chapter 7. For clarity

reasons, only one design is presented during this chapter: the Presummer using the

STM and the Prefilter using the DTM.

6.1.7 Means of communication

The inter-task communications are of two sorts:

• Data communications are done via shared memory: in that case, the program

modelling is eased. However, a particular care should be put on avoiding memory

contention: static allocation and mutual exclusion should be applied as often as

possible.

• Inter-task synchronisation is done via semaphores and signals: they are part of the

multitasking executive means of inter-task communication, and are the “low-cost”

alternatives to ports and messages. If the Presummer task wants to signal the Prefilter

task that new data has been presummed, it invokes the

‘TaskSignalSema(Semaphore_name)’ function, with the Presummer task invoking

‘TaskWaitSema(Semaphore_name)’ to ensure that this data is available or to wait

otherwise. The semaphores are also the links task-TC and task-PP.

6. The Implementation Definition Step

 64

6.1.8 The test bench

The test bench must be designed together with the case study itself since verification

of the design must be done. The SDB does not offer an adequate peripheral for

implementing the test bench with the help of an external device. Therefore, it has been

decided to implement the test bench with the SDB external memory and the C80

resources. This requires that two tasks be added to the case study: the Input task reads

the input data from a specific external memory bank while the Output task stores the

output data also in external memory. The executive-level Input task replaces the

Receiver, bubble-function declared at functional level (section 5.6).

The Input and Output tasks can be fused, for speed efficiency, respectively with the

Presummer and the Prefilter tasks. For the moment we decide to keep input and output

tasks separate from the others so that the core part of the Preprocessor is not affected

by the decision that our test bench resides on board. Moreover, the program gains in

clarity by doing such.

6.2 Refining the model

6.2.1 External memory assignments

The data must be temporarily stored in external buffers before presumming and

prefiltering. The corresponding structure and size of these buffers is as follows:

• The Presummer input buffer is a double buffer whose structure is based on the

principles described in 6.1.6. It can contain six 8-bit range lines (24 Kbytes) so that

the Presummer can work on three of them while the Input task “charges” the three

other ones. The buffer, whose structure is shown in Figure 27, is called the Input-

Presummer Double Buffer. It corresponds to ‘Data Store 1’, the storage facility drawn

in the Functional level DFD page56.

• The Prefilter input buffer is a circular buffer containing 60 16-bit range lines (480

Kbytes). The Prefilter can work on the last available 31 ranges lines, while the

6. The Implementation Definition Step

 65

Presummer task “charges” four new presummed lines. If a 60-line buffer has been

chosen instead of a smaller 35-line buffer, it is because some extra memory was

available off-chip. This buffer, whose structure is in Figure 28, is called the

Presummer-Prefilter Circular Buffer. It corresponds to ‘Data Store 2’, the storage

facility drawn in the Functional level DFD page 56.

• The Prefilter output buffer is a double buffer containing two 8-bit range lines (8

Kbytes) that links the Prefilter and the Output tasks. This buffer, whose structure is

very similar to the Input-Presummer Double Buffer, is called the Prefilter-Output

Double Buffer. This buffer doesn’t appear in the functional model: it results from our

desire to keep test bench and ‘core’ tasks independent.

I_I1-1 I_Q1-1 I_I1-2 … I_I1-2048 I_Q1-2048

I_I2-1 I_Q2-1 I_I2-2 … I_I2-2048 I_Q2-2048

I_I3-1 I_Q3-1 I_I3-2 … I_I3-2048 I_Q3-2048

I_I4-1 I_Q4-1 I_I4-2 … I_I4-2048 I_Q4-2048

I_I5-1 I_Q5-1 I_I5-2 … I_I5-2048 I_Q5-2048

I_I6-1 I_Q6-1 I_I6-2 … I_I6-2048 I_Q6-2048

The prefix “I_” attached to the variable signifies input data; the “I” or “Q” symbols
mean In_phase or Quadrature component; the first index is the range line number, the
second the range bin number.

Figure 27: The Input-Presummer Double Buffer.

2048 range bins
1 Byte

2*
3

ra
ng

e
lin

es

6. The Implementation Definition Step

 66

P_I1-1 P_I2-1 P_I3-1 … P_I59-1 P_I60-1
P_Q1-1 P_Q2-1 P_Q3-1 … P_Q59-1 P_Q60-1
P_I1-2 P_I2-2 P_I3-2 … P_I59-2 P_I60-2
P_Q1-2 P_Q2-2 P_Q3-2 … P_Q59-2 P_Q60-2

…

…

…

 …

…

P_Q1-2048 P_Q2-2048 P_Q2-2048 … P_Q59-2048 P_Q60-2048

The prefix “P_” attached to the variable signifies presummed data; the “I” or “Q”
symbols mean In_phase or Quadrature component; the first index is the range line
number, the second the range bin number.

Figure 28: The Presummer-Prefilter Circular Buffer

The other off-chip banks are the following:

• The Filter Bank. The filter coefficients reside here at start up.

• The Input Bank. The input data resides here at start up.

• The Output Buffer. The output task stores the data here so that verification can be

done (it is possible with the SBD tools to read the off-chip memory after a program

has finished running).

• The Timing Buffer. Information such as speed results is stored here at run-time.

20
48

 ra
ng

e
bi

ns

60 range lines

2 Bytes

6. The Implementation Definition Step

 67

6.2.2 Internal memory assignments

The corresponding structure and size of the internal buffers reserved for the

Presumming and Prefiltering tasks is as follows:

• The Internal Presummer Single Buffer contains three eighths of a range line, i.e.

1536 Bytes. The memory organisation is as follows: the three values to be summed

together are in consecutive memory addresses, thus allowing the averaging function to

work faster. Recall that the data is not in this order when arriving from the A/Ds: it is

corner turned. This corner turning is done “on the fly” thanks to the TC capabilities.

The buffer organisation can be seen in Figure 29.

• Four blocks of nearly four kilobytes (3968 Bytes) each are dedicated to the

Prefilter work. Two buffers are used at a time for the filtering and two for the transfer

(Recall that the DTM described in 6.1.6 is applied to the prefiltering work). The

organisation of one of these four buffers, called Internal Prefilter Double Buffers, can

be seen in Figure 30.

I_I1-1 I_I2-1 I_I3-1
I_Q1-1 I_Q2-1 I_Q3-1
I_I1-2 I_I2-2 I_I3-2
I_Q1-2 I_Q2-2 I_Q3-2

…
 …
 …

I_Q1-256 I_Q2-256 I_Q3-256

Figure 29: The Internal Presummer Single Buffer

6. The Implementation Definition Step

 68

P_I1-1 P_I2-1 P_I3-1 … P_I31-1
P_Q1-1 P_Q2-1 P_Q3-1 … P_Q31-1
P_I1-2 P_I2-2 P_I3-2 … P_I31-2
P_Q1-2 P_Q2-2 P_Q3-2 … P_Q31-2

…
 …
 …

…

P_Q1-256 P_Q2-256 P_Q3-256 … P_Q31-256

Figure 30: One of the four Internal Prefilter Buffers

The filter ‘RICE31’ is also copied on-chip. Actually, it is copied twice so that the two

PPs used for Prefiltering can work in complete independence: recall that the crossbar

can answer in one clock cycle to on-chip memory access requests from all the PPs as

long as the memory addresses are in different blocks (see 3.3.2).

6.2.3 Tasks refining

The application is split into seven tasks that are briefly described here:

• The Input task stores the data it receives (in our case it reads it form an off-chip

data bank, the Input Buffer) to the Input-Presummer Double Buffer.

• The Presummer task reads the data from the Input-Presummer Double Buffer,

averages them and stores the results in the Presummer-Prefilter Circular Buffer. In

order to do so, the Presumming task uses PP2 (Parallel Processor number 2) and the

Internal Presummer Single Buffer resources.

• The Input Prefilter transfers data from the Presummer-Prefilter Circular Buffer to

the two Internal Presummer Double Buffers. The Prefilter task is issuing requests for

PP0 and PP1 to filter the data. The Output Prefilter task transfers the data from the

Internal Presummer Double Buffers to the Prefilter-Output Double Buffer. There are

two reasons why the Prefilter function is split into three different tasks. Firstly, the

independence between transfers and computation must be maintained for the double

buffering model to work. Secondly, the data input and output transfers are also

6. The Implementation Definition Step

 69

separated into two tasks in order to facilitate the code writing: updating the data

pointers and writing the code for the start up cases is particularly complicated when

input and output data transfers are combined in one task.

• The Output task reads the data from the Prefilter-Output Double Buffer and stores

them to the Output Buffer.

• The Main task is the starting point of the program. It loads up the multitasking

executive, initialises the semaphores (see next) and launches the six tasks declared

above. Once this is done, the Main task does nothing but stay in an endless loop.

6.2.4 Semaphores

Here are the different semaphores used for the application:

• Two semaphores perform the synchronisation between the Input task and the

Presummer task. The first one, ESumFull, is here to ensure the Presummer that three

new lines have arrived (it is preferable for the Input, and not the Presummer, task to

count the number of lines arriving so that the latency resulting from inter-task

communication is minimised). The second semaphore, ESumEmpty, signals that the

Presummer task has finished the processing the set of input lines, so that the Input

task can replace them. ESumFull and ESumEmpty are the detailed ‘Event1’, present

in the functional level DFD, page 56.

• In the same manner ECirNewLine and ECirLineUsed are linking Presummer and

Prefilter tasks. These are the detailed ‘Event2’, present in the functional-level DFD.

• Three semaphores synchronise the three tasks in charge of the presumming.

FiltEndIn signals the Prefilter task that the data has arrived, FiltEndProcess signals

the Output Prefilter task that the data has been processed and FiltEndOut signals the

Input Prefilter task that the processed data has been transferred. No memory

contention should occur with the implementation of these three semaphores.

• EFiltedFull and EFiltedEmpty link the Output Prefilter task with the Output task.

6. The Implementation Definition Step

 70

6.2.5 The PP programs

Four sequential functions are dedicated to run on the PPs:

• Presumming functions: The function ppSum is simply an interface between the

MP-resident Presummer task and the average_c inner loop. average_c, the function

described in 6.1.1, is working on the Internal Presummer Single Buffer.

• Prefiltering functions: ppFilt is interfacing the MP-resident Prefilter task with

the other PP function written for the PPs, i.e. convol_c: the convolution inner loop

described in 6.1.1 is working on the Internal Prefilter Double Buffer.

6.3 Conclusion: The Executive-Level Description Model.

The system is modelled with three different diagrams that complement each other: the

DFD (functional view), the Timing Diagram and the Flow Charts (behavioural view).

The executive view is the C80 SDB block diagram, in Figure 4 page 22.

The DFD is separated into two parts for more clarity. The first part, shown in Figure

31, gives a general view of the system at task level. It summarises the implementation

choices discussed in the previous sections. The second part, drawn in Figure 32,

shows the data relationship between the MP Presummer and Prefilter tasks and the PP

corresponding “slave” programmes. When the MP requests the PP to run a program, it

does it via a command buffer (e.g. SumCmdBuf). The MP waits for the PP to signal

that it finishes the job via a semaphore (e.g. PPSumEnd). These means of

communications don’t appear in the PP code, as the choice of whether using the

multitasking executive or not is completely transparent to the PP.

The wait and process states of each task as a function of time are drawn in the Task

Timing Diagram, Figure 33. This diagram offers only a simplified version of the real

case. For example, the Input and the Presummer task execution times are chosen to be

the same so that no time is wasted waiting for the other task to complete its work. The

real case, as we will see in the next chapter, is far more complicated.

6. The Implementation Definition Step

 71

The Flow Charts complete the application modelling. They describe the sequential

behaviour of the bubble-tasks present in the DFD. The four Flow Charts representing

only the Presummer and the Prefilter are drawn in pages 75-78. Semaphores linking

the TC and the tasks have been added, as well as the semaphores linking some MP

tasks to PP functions (e.g. the InSumReq and the PPSumEnd semaphores in Figure

34). These diagrams are detailed enough so that the transition to C code is merely a

matter of transcription.

In this chapter, the application has been detailed down to its lowest interesting level,

the task level. The design is complete at this stage: the next step, described in the next

chapter, consists of implementing the Preprocessor, and verifying its performance in

terms of speed.

6. The Implementation Definition Step

 72

Figure 31: DFD, Task Level

ESumEmpty

Internal Prefilter
Double Buffers

FiltEndOut

Prefilter-Output
Double Buffer

EFiltedEmpty

FiltEndProcess

FiltEndIn

ESumFull

Internal Presummer
Single Buffer

Input-Presummer
Double Buffer

Presummer-Prefilter
Circular Buffer

Presummer

Input
Prefilter

Output
Prefilter

Prefilter

ECirNewLine ECirLineUsed

EFiltedFull

Input Data

Output data

Output
Task

Input
Task

6. The Implementation Definition Step

 73

Figure 32: DFD, MP-PPs level

SumCmdBuf

Internal Presummer
Single Buffer

Presummer ppSum

PPSumEnd

ppFilt

PPFiltEnd2

FiltCmdBuf1

PPFiltEnd1

FiltCmdBuf2

Internal Prefilter
Double Buffer nº2

Internal Prefilter
Double Buffer nº1

Prefilter

‘RICE31’ nº2

‘RICE31’ nº1

ppFilt

6. The Implementation Definition Step

 74

Figure 33: The Task Timing Diagram

EFiltedFull

FiltEndIn

EFiltedFull

ECirNewLine

ECirLineUsed

ECirNewLine

ESumFull

ESumEmpty

Input Presummer
Output

 Prefilter
Input

 Prefilter

Prefilter

Output
T

im
e

A
xe

s

FiltEndOut

FiltEndProcess

FiltEndIn

…

…

…

EFiltedEmpty

…

…

…

32
 It

er
at

io
ns

6. The Implementation Definition Step

 75

Figure 34: The Presummer Task Flow Chart

ESumFull

Initialisation: Number of Summed Lines
NSL = -31

[NSL > -1] AND
[NSL multiple of 4]?

IDLE: Wait

Swap the Input-Presummer Double Buffer
Update the pointer to the Presummer-Prefilter
Circular Buffer
Signal ESumEmpty
NSL ++

NO

YES

Send ECirNewLine

ECireLineUsed

InSumReq

PPSumEnd

OutSumReq

Number of Blocks=16?

In Transfer Request: Wait

Send SumCmdBuf to 1 PP: Wait

Out Transfer Request: Wait

Number of Blocks = 0

Wait

Increment Number of Blocks
Update the pointers to memory

NO

YES

6. The Implementation Definition Step

 76

Figure 35: The Input Prefilter Task Flow Chart

ECirNewLine

Initialisation

IDLE: Wait

- Update the pointer to the Presummer-
Prefilter Circular Buffer

- Signal ECirLineUsed

FiltEndOut

InFiltReq

Number of Blocks=32?

Wait

In Transfer Request: Wait

Number of Blocks = 0

- Increment Number of Blocks
- Update the pointers to memory
- Signal FiltEndIn

NO

YES

6. The Implementation Definition Step

 77

Figure 36: The Prefilter Task Flow Chart

ECirNewLine

Initialisation

IDLE: Wait

PPFiltEnd

Send FiltCmdBuf to 2 PPs: Wait

Swap the Internal Prefilter Double Buffer-

Signal FiltEndProcess

6. The Implementation Definition Step

 78

Figure 37: The Output Prefilter Task Flow Chart

FiltEndProcess

Initialisation

IDLE: Wait

- Swap Prefilter-Output Double Buffer
- Signal EFiltedFull

OutFiltReq

Number of Blocks=32?

Out Transfer Request: Wait

Number of Blocks = 0

Increment Number of Blocks

NO

YES

Wait
EFiltedEmpty

- Swap Internal Prefilter Double Buffer
- Signal FiltEndOut

7. The Implementation Step

 79

7. The Implementation Step

The implementation step chapter ends the Preprocessor development work: it

describes the means utilised for implementing, debugging and verifying the case

study. Section 7.2 describes the inter-linked implementation and verification process.

Then, the measured results are given in section 7.3 and analysed in section 7.4. This

section concludes on how the code could be further optimised.

Prior to this, the following section explains why four different versions of the

Preprocessor are to be written. The section also describes what are the principal

characteristics of these different codes.

7.1 The Four Implementations

There are design orientations whose costs in terms of speed are difficult to “predict”:

one must then carry on with the code writing and calculate the speed performances a

posteriori. If the speed results are unsatisfying, alternative design choices must be

made and the source code must be re-written. The transfer models described in section

6.1.6 illustrate the above. As the efficiency of these models in terms of speed is not

known, it is decided to write the four codes combining STM and DTM for both the

Presummer and the Prefilter. A brief description of the four implementations follows:

The DD implementation. DTM for both the Presummer (internal RAM size: 2∗0.75

kilobytes) and the Prefilter (internal RAM size: 2∗3.88 kilobytes). There are in total 9

tasks composing the Preprocessor code: the Main, the Input, the Input-Presummer, the

Presummer, the Output-Presummer, the Input-Prefilter, the Prefilter, the Output-

Prefilter, and the Output tasks.

7. The Implementation Step

 80

The SS implementation. STM for both the Presummer (internal RAM size: 1∗1.5

kilobytes) and the Prefilter (internal RAM size: 1∗7.76 kilobytes). There are in total 5

tasks composing the Preprocessor code: the Main, the Input, the Presummer, the

Prefilter, and the Output tasks.

The SD implementation. STM for the Presummer (internal RAM size: 1∗1.5

kilobytes) and DTM for the Prefilter (internal RAM size: 2∗3.88 kilobytes). This is

the design described in the previous chapter (seven tasks).

The DS implementation. DTM for the Presummer (internal RAM size: 2∗0.75

kilobytes) and STM for the Prefilter (internal RAM size: 1∗7.76 kilobytes). There are

in total 7 tasks composing the Preprocessor code: the Main, the Input, the Input-

Presummer, the Presummer, the Output-Presummer, the Prefilter, and the Output

tasks.

7.2 Implementation and Functional Verification

First, only one version, the SD, is selected to be entirely written and tested. The work

consists then of writing and debugging one by one the SD tasks. Two comments on

the Main task follow:

• The Main function assigns a ‘priority’ value to each of the task it creates (the

priority value determines the task scheduling, see [32]). For the moment, the same

priority is attributed to each eight tasks so that the MP resource can be shared in a

round-robin fashion.

• All the tasks are written following the same pattern: Wait Semaphore 1-Do Work-

Signal Semaphore 2. This concept leads to robust behaviour since none of the

functions is able to start a new cycle without ‘acknowledgement’. But it raises an

issue: how to start the process if every task waits. The multitasking executive’s

answer to the problem is the possibility to assign an initial count to each semaphore (a

semaphore can be seen as a shared variable that gets incremented when signalled and

decremented when received). For example, as the Input task does not have to wait the

7. The Implementation Step

 81

first two times to fill the Input-Presummer Double Buffer, the ESumEmpty

semaphore’s count is initialised at two.

The other tasks can be easily deduced from the DFD and the Flow Charts page 72 to

page 78.

The debugger tool described in 3.3.2 is used during the early stages of the

development, when individual task behaviours or inner loops are to be tested. Here, a

short set of 21 ‘friendly looking’ range lines in loop is used as input data (the

simulated data set contains too many zeros for the inner memory reading at debugging

to be useful).

The verification of the entire application is quite difficult with the debugger. In

addition to the unfriendly character of the graphic interfaces (there is one DOS

window for each processor), the co-ordination between the MP and the PPs is not

perfect when debugging. For example, it is impossible to launch from the MP

debugger a command to the same PP twice.

This is the reason why the overall functionality verification is carried out using the

SDBshell tool. Once this program is launched from the host computer, the following

operations are performed: first, the input data is “manually” stored at a specific

address in external memory (Input Bank). It corresponds to a 1024-lines block of the

data that served in the system simulation, page 46 (this is due to the limited amount of

available space in the SDB DRAM). Following the input storage, the C80 program is

executed. Finally, the Output Buffer is read. The resulting 78 range lines are

compared with the simulation results.

Once the SD is completely checked and verified, the same work is performed for the

DD, SS, and DS implementations.

7.3 Speed Verification

The output throughputs are measured as follows: the Output task code is slightly

modified: now, in addition to the described jobs, the program stores the register

TCOUNT (in the Timing Buffer) each time a range line is produced. TCOUNT is the

7. The Implementation Step

 82

current 32-bit value of the timer (decrements by one at each clock cycles). Following

the execution of the design, the Timing Buffer is read using SDBshell. The

Presummer throughputs are measured following the same principles. These two

maximum throughputs measured for each implementation are below.

Table 5: The Four Implementation Throughputs

 Presummer Throughput Output Throughput

DD Implementation 3.8 milliseconds 15.2 milliseconds

SS Implementation 5.2 milliseconds 11.7 milliseconds

SD Implementation 2.8 milliseconds 10.1 milliseconds

DS Implementation 5.9 milliseconds 13.5 milliseconds

The four implementations satisfy the client requirements of having their output

throughputs better than 19.2 milliseconds. However, the SS and the DS

implementations do not fulfil the requirements of having the presummed throughput

better than 4.8 milliseconds. On close inspection, the SS (respectively DS)

implementation throughput is most of the time at 2.2 milliseconds (respectively 2.5):

the jumps to 5.2 milliseconds (respectively 5.9) occur one time out of four, when the

Prefilter task(s) start(s) to process new range lines. The excessive jumps show that the

Prefilter work does not “spread” over the four Presummer cycles. The results above

show us that using a DTM for both the Presummer and the Prefilter is not really

efficient either.

Three propositions for the figures in Table 5 follow:

• By increasing the number of tasks, the overhead due to task context switching is

likely to increase.

• The lack of pipelining creates moments when data transfers bottleneck the MP and

the PPs. The Prefilter needs more time to transfer and process its data block than the

Presummer does in any of the proposed implementation. Therefore, a bottleneck on

the Prefilter is likely to create more timing overhead than a bottleneck on the

Presummer.

7. The Implementation Step

 83

• The imbalance between the Presummer and the Prefilter number of internal loops

also affect the timing results. This proposition is illustrated through the comparison

between the SD and DS implementations (They both have the same number of tasks,

so proposition one does not apply). In order to produce one output line, the DS

implementation goes trough (16∗4) 64 presumming and 16 prefiltering “transfer on

chip-process-transfer off chip” type loops. As a consequence, the Presummer waits

and signals are more numerous than the Prefilter ones. Therefore, situations whereby

the multitasking core has to test 5 or 6 tasks before founding one available are not

scarce (Recall that a wait causes the core to switch tasks and that the tasks share the

MP in a round-robin fashion). On the contrary, the SD implementation is perfectly

balanced, going trough 32 presumming and 32 prefiltering loops per output line

production. In that case, the multitasking core switches more regularly from

presumming to prefiltering: the timing overhead due to task context switching is then

shortened.

It is very difficult if not impossible to calculate precisely context task switching

timing overheads. For instance, the states of the TC as a function of time can not be

perfectly evaluated (e.g. the TC performs unpredictable tasks such as data instruction

loads), so it is difficult to know for how long a task would wait for data transfer. This

is the reason why these propositions remain rough and do not offer any quantitative

answers.

7.4 Chosen Design Speed Analysis

The SD implementation is preferred to the others because it offers the best timing

results and that its code is simpler than the only other implementation that fulfil the

client requirements, i.e. the DD implementation. The SD implementation has been

fully described in the previous chapter.

The evolution of the Presummer and the Prefilter throughputs over time are plotted in

Figure 38 and Figure 39. These evolutions can be explained as follows:

7. The Implementation Step

 84

• The Prefilter does not perform while the first 31 presummed lines are produced.

This causes the first 30 presummed throughput rates to level at 1.85 milliseconds.

• The Prefilter starts a new job every fourth presummed line. This causes the

regularly spaced jumps of approximately 0.2 milliseconds in the presummed

throughput graph.

• The Prefilter sometimes needs to wrap around the Presummer-Prefilter Circular

Buffer to collect the 31 lines to be processed. In that case, the on-chip data transfer

requests double, overloading by such the C80 work. This explains the square aspect of

the output throughput graph and the steps that can be seen every 30 lines in the

presumming throughput graph.

The maximum output throughput overloads the convolution timing complexity by 10

to 16 %, a reasonable result. Another speed result is of interest: the design, with the

average and convolution inner loops deactivated, has a maximum output throughput

of 9.8 milliseconds. Therefore, if the design were to run faster, the rewriting of the PP

codes would not be, alone, satisfying: the MP tasks would have also to be reshaped.

An idea would use Assembly for the inner loops and fuse the Input task with the

Presummer task and the Output task with the Output Prefilter tasks. Unfortunately,

both transformations would cause the code to be less readable.

7. The Implementation Step

 85

Figure 38: The Presummer Throughput, SD Implementation

Figure 39: The Output Throughput, SD Implementation

7. The Implementation Step

 86

7.5 Conclusions

In this chapter, the implementation has been verified and the speed checked against

the client requirements. The SD implementation offers a successful version of the

Preprocessor targeted for the C80 (The C codes are in Appendix D). However, an in-

depth analyse of these timing results has been quite difficult because the ideal tools

for time performance analysis, e.g. a profiler, were not available.

This concludes our work on the development of the Preprocessor. The following

chapter will draw general conclusions on the advantages and limitations of using a

top-down approach to designing.

8. Conclusions and Recommendations

 87

8. Conclusions and Recommendations

The following paragraphs summarise the remarks on the methodology and the

methods used during the development of the Preprocessor. In addition, the FPGA

implementation of the preprocessor attempted by Grant Carter [2] and the C80

implementation described above are briefly compared.

Calvez’s methodology was described in Chapter 2 in a rather simplistic way (some

may even say naïve). Indeed, a pure top-down approach for designing is unrealistic.

The example of the inner loops illustrates the matter: they had been implemented at

the early stages of the implementation definition step so that their resulting timing

complexity measurement could ease the mapping of the functional DFD to the SDB.

Equally, using hardware components or software libraries (i.e. using reusability

methods) in order to reduce the implementation cost can cause some changes in the

trade-offs made during the functional design phase. Thus, some FPGA’s FIR Filter

VHDL (Very High Speed Integrated Circuit Hardware Description Language) models

can only have their number of taps equals to powers of two [2]. So, in practise,

bottom-up principles are applied along the development process.

But using a ‘globally’ top-down approach for specifying and designing DSP systems

has undoubtedly its advantages. One of them is that it increases the work at design

level and forces the designer to think about the solution at first in a hardware-

independent way: in that case, the designer is likely to produce more reusable

specifications and general solutions. Increasing the work at design level also means

enforces the algorithm validation step: in our case study, using a rather short filter to

obtain better results was rather a counter-intuitive concept. Hence, if the simulation

results were not at our disposition, the designer would have been tempted to increase

the filter length regarding the timing results, degrading by such the performance of the

system.

8. Conclusions and Recommendations

 88

Another advantage is that the methodology facilitates project organisation and

management: development of complex digital signal processing systems can be

assigned to different engineers. This is particularly interesting because different

development steps require different skills. Indeed, coming back to the Preprocessor

example, the specification step was conducted with some SAR background; the

functional design step required digital signal processing skills; knowledge on DSPs,

RTOS and parallelism were needed during the implementation definition step; C

programming and debugging skills were necessary during the implementation step.

Means to reduce the development time cost, especially during implementation, have

been described in Chapter 2. An assessment on their use and their efficiency follows:

• Co-design methods have not been used in the case study: indeed, the entire

hardware support was a COTS product and was part of the technical specifications.

• Reusability has been proved to be useful when the decision was made to

implement four versions of the application, see 7.1. Indeed, whereas the first version

(The SD version) took 11 man-days to implement and verify (the learning curves and

all the previous steps are excluded from the timing count), the second and the third

(DD and SS) took only two man-days. The development time cost has been reduced

mainly thanks to the multitasking executive that helped the modularization of the

software program. The fourth version took less than an hour to implement, as the

work consisted only of assembling already existing tasks. The use of existing software

functions has also greatly speeded up the functional design simulation. But, generally

speaking, the creation of software ‘components’ or libraries must be carefully

managed: highly robust functions must be implemented, and, very important, changes

must be strictly controlled and documented.

• Developing tools: The tools used during the development process of the

Preprocessor are the following: Mathcad (specification step), Matlab (functional

design step), the multitasking executive (implementation definition step), the

compilers, the debuggers, SDBshell, C and Hexadecimal editors (implementation

step). No profiler was available: it would be interesting for future work to get hold of

the TMS320C80 simulator and see if the included profiler would help optimising

8. Conclusions and Recommendations

 89

systems speed performance.

Using C as the programming language definitely increased the programmer

productivity. The multitasking executive also helped a great deal in the transition from

functional to executive model. But both of them have a time cost that cannot be

precisely evaluated. This constitutes the main drawback of using a general-purpose

DSP with a high-level language and an operating system. This means that algorithm

complexity must be evaluated at functional design level and that the DSP must be

chosen with speed and memory capabilities largely superior to the algorithm

complexity evaluation. In our case, the ratio between the assembly coded prefiltering

inner loop and the actual program execution time is approximately one to three.

Some comparisons have been carried out with Grant Carter’s implementation of the

same Preprocessor on a FPGA [2]. The specification and functional design steps lead

to similar results, but major differences exist in the hardware-dependent design. One

of them is the use, for the FPGA implementation, of two overall loops, or state

machines, in order to control the sequence of operations in the Prefilter and in the

Presummer. These state machines do not appear in the DSP design: a DSP naturally

delivers a sequential interpretation of the code, while, coupled with a RTOS,

concurrency can be performed as well. Another big difference is that the DSP design

works globally on data blocks (reducing by such TC bottlenecks and task

communication overload) while the FPGA design works on data values (reducing by

such the amount of registers to produce). Generally speaking, the implementation of a

system in an FPGA implies working at a less abstract level than the mapping of a

functional design onto a DSP. As a result, the FPGA is more dedicated to the

application, leading to possible reduction of hardware cost.

Despite these differences, the design community expresses a strong will to

homogenise the development process. The creation of ambitious, third-generation

software package such as COSSAP (developed by Synopsis), or Ptolemy (developed

by the University of California Berkeley, see [33]), illustrates this. These design tools

offer not only the possibility to simulate the drawn system, but they also claim the

possibility of automatically generating appropriate codes for the desired target(s). The

investigation of such packages could be an interesting extension to this thesis.

Appendix A. SAR Parameter Calculations

 90

Appendix A. SAR Parameter Calculations

This appendix contains the preliminary MathCAD calculations derived from the basic

SA-SAR characteristics. These results are mostly utilised during the algorithm

simulation in the functional design step. This MathCAD file can also be found on the

enclosed CD-ROM, under the specification directory.

Constant values

c 3 108. m. sec 1.
==
SA-SAR characteristics

f 141 MHz. (VHF-System) Client(C): Frequency band
Result(R): Wavelengthλ c

f
λ 2.128 m=

v 246 m. sec 1.
C: The radar is mounted on a boeing

h boeing 10 km.

θ az 45 deg. C: Azimuth Beamwidth

C: Elevation Beamwidth

C: Look Angle

C: Pulse Repetition Frequency (PRF)

C: Pulse length

θ el 30 deg.

θ look 30 deg.

PRF 625 Hz.

τ 88 10 9. sec.

B d

4 v. sin
θ az

2
.

λ
B d 176.983 Hz= !! R:Doppler Bandwidth

δ slant_range
c τ.

2 δ slant_range 13.2 m= !! R: Range Resolution

==

Appendix A. SAR Parameter Calculations

 91

GEOMETRY

R target_ground 10 km. Assumed(A): Ground distance from
the radar to the target

R target_slant R target_ground
2 h boeing

2 R: Radar-Target Slant Range (Distance)

R target_slant 14.142 km=

t target 2
R target_slant

c
. R: Radar-Target Slant Range (Time)

t target 9.42809 10 5 sec=

R near_slant
h boeing

cos θ look
R: Near Slant Range (Distance)

R near_slant 11.547 km=

t near
2 R near_slant.

c

t near 7.69800410 5 sec= R: Near Slant Range (Time)

f s 12.768617MHz. C: Sampling frequency from
SarSim2

Figure: SAR Geometry

δslant_range

Rcover_slant

θlook

Aircraft

.

Rnear_slant

Rfar_slant

Ground

Appendix A. SAR Parameter Calculations

 92

N range 2048 C: Number of range bins

R cover_slant N range δ slant_range. R: ground coverage, in range

R cover_slant 27.034 km=

R far_slant km=R far_slantR far_slant R cover_slant R near_slant

T i

2 R target_slant. tan
θ az

2
.

v
T i 47.625 sec= R: Illumination time

N PRF T i. N 2.977 104=

CONCLUSION.
The SARSIM2 simulation "bounders" are :

in azimuth -
T i
2

 and
T i
2

in range R near_slant and R far_slant

Remark. For the linux simulation purposes the data matrix has been cut out:
The first sample is the range bin nb 200

t near
200
f s

9.26434410 5 sec=

===

PRESUMMER / PREFILTER OPERATIONS

K win 0.89

δ az K win
v

B d
. δ az 1.237 m= !! R: Azimuth Resolution

(Before Filtering)

Nb Sum 3

PRF
Nb Sum

208.333 Hz=

Nb filt 31 Skp filt 4

PRF new
PRF

Nb Sum Skp filt. R: New PRF after
Presumming and PrefilteringPRF new 52.083 Hz=

Calculation of the new azimuth bandwidth / resolution, after filtering and
sub-sampling. Let the new azimuth resolution linked to the range resolution

The factor 2 characterises
the loss of resolution due to 2 independent looks δ az

δ slant_range
2

Appendix A. SAR Parameter Calculations

 93

2

nB d K win
v

δ az
.

!! R: Minimum Acceptable
Bandwidth nB d 33.173 Hz=

==
Calculation: Number of the Points wich lie on the same first range line

We have :

δ slant_range 13.2 m=

R target_slant 14.142 km=

R short R target_slant
R long R short δ slant_range

D az 2 R long
2 R short

2.

D az 1.222 km=

N samples D az
PRF

v
.

N samples 73.61=
N samples

3
24.537=

N samples
12

6.134=

This Number of Samples limits the filter length:it would be useless to have a filter
bigger than 258 because we will never have more than 258 points in the same range
line, i.e. 258 points to convolve with the filter.

==

With a 52 Hz Bandwidth, what would be the new Ilumination time
and the number of samples in azimuth ?

We have :

nB d 52 Hz nPRF 52 Hz.

nθ az 2 asin
nB d λ.

4 v.
. nθ az 12.912 deg=

nT i

2 R target_slant. tan
nθ az

2
.

v
nT i 13.01 sec= R: Illumination time

N nPRF nT i. N 676.529=

==

END

Appendix B. The FIR Filters

 94

Appendix B. The FIR Filters

This appendix describes the characteristics of the different FIR filter utilised in the

functional design step chapter. The filters are:

• COMBO: the simplest filter, consisting of three unit coefficients.

• HAM15: this filter has been designed using a Hamming window. The program

used, called ‘fir1’, is part of the signal processing toolbox under Matlab. The

frequency cut-off is set at 22 Hz for a 208.33 sampling frequency. The required

number of coefficients is 15.

• HAM31: this filter has been designed with fir1, a Hamming window, a 22 Hz

frequency cut-off (208.33 sampling frequency), and a required number of taps equal

to 31.

• RECT31: This filter has been designed with fir1, a rectangular window, a 22 Hz

frequency cut-off (208.33 sampling frequency) and a required number of taps equal to

31.

• RICE31: This filter has been designed with cl2lp. Cl2lp is a Matlab program

developed by Rice University (the program can be found at http://www-dsp.rice.edu):

it uses constraint least square optimum techniques (see [28]). The cut-off frequency is

22 Hz; the required stop band and passband ripples are at 1 per cent (or -40 dB); the

number of coefficients is 31.

• RICE63: This filter uses the same program and parameters than above, except

that the number of coefficients is 63.

• RICE81: This filter has been designed for comparing single-stage and dual-stage

models at functional design level. The sampling frequency is 625 Hz, and the number

Appendix B. The FIR Filters

 95

of coefficients 81. The other parameters are equivalent to the ones used for creating

RICE31.

The time and frequency responses of each filter are plotted in the next pages. The

filter coefficients can be found on the enclosed CD-ROM, under the simulation/filters

directory.

Appendix B. The FIR Filters

 96

Figure 40: ‘COMBO’ Filter Impulse Response

Figure 41: ‘COMBO’ Filter Frequency Response

Appendix B. The FIR Filters

 97

Figure 42: ‘HAM15’ Filter Impulse Response

Figure 43: ‘HAM15’ Filter Frequency Response

Appendix B. The FIR Filters

 98

Figure 44: ‘HAM31’ Filter Impulse Response

Figure 45: ‘HAM31’ Filter Frequency Response

Appendix B. The FIR Filters

 99

Figure 46: ‘RECT31’ Filter Impulse Response

Figure 47: ‘RECT31’ Filter Frequency Response

Appendix B. The FIR Filters

 100

Figure 48: ‘RICE31’ Filter Impulse Response

Figure 49: ‘RICE31’ Filter Frequency Response

Appendix B. The FIR Filters

 101

Figure 50: ‘RICE63’ Filter Impulse Response

Figure 51: ‘RICE63’ Filter Frequency Response

Appendix B. The FIR Filters

 102

Figure 52: ‘RICE81’ Filter Impulse Response

Figure 53: ‘RICE81’ Filter Frequency Response

Appendix C. The Simulation

 103

Appendix C. The Simulation

The different data files and scripts created during the simulation of the functional

design (see 5.4.1) are on the enclosed CD-ROM, under the simulation directory (Note

that the programs written by Horrell [30] and Lengenfelder [29] and used during the

simulation are not on the CD-ROM). This directory is structured as follows:

C.1 The raw&presum directory

This directory contains the input, the presummed and the azimuth compressed data

files (see 5.4.1). The associate script files are also here.

• sarsim_raw.scr: SARSIM2 script for the creation of the input data matrix.

• raw.bin: Input data matrix. Size: 116 Mbytes (2048 columns, 29765 lines and

unsigned char complex values).

• corner.bin: Corner turned input data. Size: 116 Mbytes (29765 columns, 2048

lines and unsigned char complex values).

Appendix C. The Simulation

 104

• bcorner.bin: Block extracted from corner turned matrix. The block extraction

process was not mentioned in 5.4.1. It consists of extracting the relevant 128 range

bins that contains non-zero values. This has been done for saving memory and

processing time. The bcorner.bin file will feed the simulated Presummer, but also the

azimuth compression process. Size: 7.2 Mbytes (29765 columns, 128 lines and

unsigned char complex values).

• presum.scr: Script for the Presummer function.

• summed.flt: Presummed bcorner.bin. Size: 4.8 Mbytes (9922 columns, 128

lines, floating complex values).

• azccorn.scr: Script for the azimuth compression function.

• azccorn.flt: Azimuth compressed bcorner.bin. Size: 29 Mbytes (29765 columns,

128 lines, floating point complex values).

C.2 The prefilt directory

The Prefilter operation is performed for each of the filters described in the previous

appendix. Each of the comb, ham15, ham31, rect31, rice31, rice63 directories

contains the following files:

• filt.txt, fir1.txt, or cl2lp.txt: Filter coefficients file.

• prefilt.scr: Script for the Prefilter function.

• filted.bin: Prefiltered summed.flt. Size: 620 Kbytes (2481 columns, 128 lines,

unsigned char complex values).

• azcfilt.scr: Script for azimuth compression.

• azcfilt.flt: Azimuth compressed filted.bin. Size: 2.4 Mbytes (2481 columns, 128

lines, floating point complex values).

Appendix C. The Simulation

 105

C.3 The raw_52 directory

This directory contains the different files involved in the creation of reference matrix,

see 5.4.1.

• sarsim_52.scr: SARSIM2 script for the creation of the new raw data matrix.

• raw_52.bin: Raw data matrix. Size: 9.7 Mbytes (2048 columns, 2481 lines and

unsigned char complex values).

• corner.bin: Corner turned raw matrix. Size: 9.7 Mbytes (2481 columns, 2048 lines

and unsigned char complex values).

• bcorner.bin: Block extracted from corner turned matrix. This is the so-called

Reference matrix. Size: 620 Kbytes (2481 columns, 128 lines and unsigned char

complex values).

C.4 The matlab directory

Each of the filted.bin under the prefilter directory is compared with the Reference

matrix bcorner.bin. This comparison is done with the help of the following Matlab

functions:

• get_reference: this function simply reads the file bcorner.bin and creates the

Reference matrix.

• calculate_INoise reads the filted.bin file, creates the Filtered matrix and subtracts

it to the Reference matrix. Prior to the subtraction operation, both matrices are

normalised and interpolated in range and azimuth. The Matlab routine finally

integrates the newly created “difference” matrix to obtain the so-called Integrated

Noise, our criterion for the best filter selection.

• read_IQ and vec2asc are two annexe programs.

Appendix C. The Simulation

 106

C.5 The test bench directory

Contains the test bench used during the verification phase.

• braw.bin. Block extracted from raw.bin (raw&presum directory). Size: 4 Mbytes

(2048 columns, 1024 lines, unsigned char complex values). braw.bin is the file used

as input data during the verification of the implementation(s).

• bcorner.bin Corner turned braw.bin. Size: 4 Mbytes (1024 columns, 2048 lines,

unsigned char complex values).

• bsummed.flt Presummed bcorner.bin. Size: 5.3 Mbytes (341 columns, 2048 lines,

floating point complex values).

• out_sim.bin Prefiltered bsummed.flt (the filter used is ‘RICE31’). Size: 312

Kbytes (78 columns, 2048 lines, unsigned char complex values). This file is to be

compared with the out_C80 file, see Appendix D.

Appendix D. The C80 Programs

 107

Appendix D. The C80 Programs

The different C80 programs are on the enclosed CD-ROM, under the C80 programs

directory. This directory is structured as follows:

Appendix D. The C80 Programs

 108

D.1 The PP C Compiler Benchmark directory

This directory contains the codes that were used to benchmark the PP C compiler, see

3.3.2.

D.1.1 The source sub-directory

The source directory contains the following C source files:

• main.c: MP file and starting point of the program. main.c creates the FirServer

task that commands PP0 to execute ppFir.c.

• ppFir.c: PP main program that transfers data on-chip, launches the convol inner

loop and transfers data off-chip.

• convol_c.c: convolution inner loop written in C.

• convol_c.s: Assembly file generated by the compiler on the convol_c.c file. It is to

be compared with the following one.

• convol_s.s: convolution inner loop written in Assembly.

• filt.c: filter coefficients file.

• input.c: input data file.

• build.bat: batch file that contains all the compilation and linking commands.

D.1.2 The include sub-directory

The include directory contains the following C include files

• main.h: MP include file.

• ppFir.h: PP include file.

Appendix D. The C80 Programs

 109

D.1.3 The obj sub-directory

Contains the object files created by the C80 compiler convol_c.o, convol_s.o, filt.obj,

input.obj, main.obj, and ppfir.o. Five other files are present:

• mypplnk.cmd: PP linker command file.

• ppfir.out: PP intermediate executable

• ppfir.map: file generated by the linker for the PP link.

• mymplnk.cmd MP linker command file.

• xfir.map: file generated by the linker for the final link.

D.1.4 The exe sub-directory

• init.pdm is used for debugging purposes.

• xfir.out is the C80 executable to be downloaded to the SDB.

D.2 The dd, ds, sd and ss directories

These directories respectively contain the codes that represent the dd, ds, sd and ss

implementations, see 7.1.

D.2.1 The source sub-directory

• pp_Sum.c & average_c.c are the PP functions in charge of the presumming, see

6.2.5.

• pp_Filt.c & convol_c.c are the PP functions in charge of the prefiltering, see 6.2.5.

Appendix D. The C80 Programs

 110

• coef.c is the filter coefficients file.

• mp_Main.c implements the Main task, see 6.2.3

• mp_Input.c implements the Input task, see 6.2.3

• mp_Output.c implements the Output task, see 6.2.3

• [mp_ISum.c, mp_Sum.c, mp_OSum.c] or [mp_Sum.c]: implements the

Presummer, with either the DTM (dd and ds implementations) or the STM (ss and sd

implementations) model.

• [mp_Filt.c, mp_IFilt.c, mp_OFilt.c] or [mp_Filt.c]: implements the Prefilter,

with either the DTM (dd and sd implementations) or the STM (ss and ds

implementations) model.

• build.bat: batch file that contains all the compilation and linking commands.

D.2.2 The include sub-directory

The include directory contains the following C include files

• mp.h: MP include file

• common.h: include file used by both MP and PP programs

D.2.3 The obj sub-directory

This directory contains each of the compiled C files. Two other files are present:

• mylnk.cmd: linker command file.

• preproc.map: file generated by the linker.

Appendix D. The C80 Programs

 111

D.2.4 The exe sub-directory

• preproc.out: C80 executable.

• braw.bin: input data file, see C.5.

• init.pdm and mpdb.bat are used for debugging purposes.

• out_C80.bin is the resulting output data file read from the SDB external memory.

The file is to be compared to out_sim.bin, see C.5.

• out_time.bin is the file containing the values of the register TCOUNT at output

range line production time.

• sum_time.bin is the file containing the values of the register TCOUNT at

presummed range line production time.

In addition, another timing result file exists for the chosen (sd) implementation.

• out_t1.bin contains also timing results at output line production. However, here,

for timing understanding, the inner loops are deactivated (see 7.4).

 112

REFERENCES

[1] J.P. Calvez, Embedded Real-Time Systems: a Specification and Design

Methodology, John Wiley Publisher 1993.

[2] G. Carter, System Level Simulation of Digital Designs: A Case Study, MSc

Thesis, University of Cape Town, 1998.

[3] G. Booch, Object-Oriented Analysis and Design with Applications, 2nd

Edition, Benjamin/Cummings, New York, 1994.

[4] J. Rumbaugh et al., Object-Oriented Modelling and Design, Prentice-Hall

Englewood Cliffs NJ, 1991.

[5] G. Booch et al, The Unified Modelling Language User Guide, Addison-

Wesley Longman, 1998.

[6] T. DeMarco, Structured Analysis and System Specification, Prentice-Hall,

1979.

[7] E. Yourdon, Modern Structured Analysis, Prentice-Hall, Englewood Cliffs NJ,

1989.

[8] D.J. Hatley, I.A. Pirbhai, Strategies for Real-Time System Specifications,

Dorset House Publishing Co., 1988

[9] P.T. Ward, and Mellor, Structured Development for Real-Time Systems,

Prentice-Hall, Englewood Cliffs NJ., 1989

[10] RASSP Taxonomy Working Group, RASSP VHDL Modelling Terminology

and Taxonomy, http://www.atl.external.lmco.com/rassp/taxon/rass_taxon.html, June

1998.

[11] Lapsley, Bier, Shoham, Lee, DSP Processor Fundamentals, Chapter 5,

Berkeley Design Technology, 1996

 113

[12] V.K. Madisetti, VLSI Digital Signal Processors, Chapter 1, Butterworth-

Heinemann, 1995

[13] Texas Instruments, TMS320C8x System-Level Synopsis, Chapter 2, 1995.

[14] Texas Instruments, TMS320C80 (MVP) Master Processor User’s Guide, 1995.

[15] Texas Instruments, TMS320C80 (MVP) Parallel Processor User’s Guide,

1995.

[16] Texas Instruments, TMS320C80 (MVP) Transfer Controller User’s Guide,

Chapter 4, 1995.

[17] Texas Instruments, TMS320C80 (MVP) Software Development Board

Installation Guide, 1997.

[18] Texas Instruments, TMS320C80 (MVP) Code Generation Tools User’s Guide,

Section 1.3.3, 1995.

[19] MVP Hotline Account, personal communication, hotline@micro.ti.com, 1998

[20] C.Oliver, S.Quegan, Understanding Synthetic Aperture Radar Images, Artech

House 1998.

[21] M.L. Skolnik, Introduction to radar systems, McGraw-Hill, 1981.

[22] J.C. Curlander, R.N. McDonough, Synthetic Aperture Radar, Systems and

Signal Processing, Wiley & Sons 1991.

[23] F.J. Harris, “On the use of windows for harmonic analysis with the Discrete

Fourrier Transform”, IEEE Proceedings, vol.66, no. 8, 1 January 1978, pp. 51-83.

[24] B.C. Barber, “Theory of digital imaging from orbital synthetic-aperture radar”,

Int. J. Remote Sensing, Vol. 6, No7, 1985.

[25] F.M. Henderson, A.J. Lewis, Principles & Applications of Imaging Radar,

John Wiley & Sons, §2, 1998.

 114

[26] V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, Prentice-

Hall, 1989.

[27] T.W. Parks and C.S. Burrus, Digital Filter Design, John Wiley and Sons,

1987.

[28] I.W. Selesnick, M. Lang and C. S. Burrus, “Constrained Least Square Design

of FIR Filters without specified transition bands”, IEEE Transactions on Signal

Processing, June 1994.

[29] R. Lengenfelder, The Design and Implementation of a Radar Simulator, MSc

Thesis, University of Cape Town, 1998.

[30] J. Horrell, The Design of a VHF Synthetic Aperture Radar System, PhD

Thesis, University of Cape Town, 1999.

[31] T. Axford, Concurrent Programming: Fundamental Techniques for Real-Time

and Parallel Software Design, p.9-14, John Wiley & Sons, 1989.

[32] Texas Instruments, TMS320C8x (MVP) Multitasking Executive User’s Guide,

Section 2.8.1, 1995

[33] http://www.ptolemy.eecs.berkeley.edu

 115

BIBLIOGRAPHY

• W. Baetens, M. Adé‚ R. Lauwereins, “Porting GRAPE to the TMS320C80”, 8th

Int. Conf. on Signal Processing Applications & Technology ICSPAT, San Diego CA

USA, Sept. 14-17, pp. 1589-1593, 1997.

• W. Baetens, M. Adé, R. Lauwereins, “Rapid prototyping of video processing

algorithms on the TMS320C80 MVP”, 2nd European DSP Education and Research

Conference. Paris, France, September 23-24, p314-319, 1998.

• Blue Wave Systems, A Parallel DSP Based Radar System, Application Note,

http://www.bluews.com

• Blue Wave Systems, Solving Medical Imaging Problems with the C80 DSP,

Application Note, http://www.bluews.com

• W.G. Carrara, R.S. Goodman, R.M. Majewski, Spotlight Synthetic Aperture

Radar Signal Processing Algorithms, Artech House, 1995.

• J.E. Cooling, Real-Time Software Systems, an introduction to structured and

object-oriented design, International Thomson Computer Press, 1997.

• E. Cooper, Minimizing Quantization Effects Using the TMS320 Digital Signal

Processor Family, Application Report, Texas Instruments, 1994.

• G. Cutts, Structured Systems Analysis & Design Methodology, Paradigm 1987.

• J.A Debardelaben, V.K. Madisetti, A.J. Gradient, Incorporating Cost Modelling in

Embedded-System Design, IEEE Design & Test of Computers, July-September 1997.

• T. DeMarco, Structured Analysis and System Specification, Prentice-Hall, 1978.

• Downton, D. Crookes, Parallel Architectures for Image Processing, Electronics &

Communication Engineering Journal, 10, (3), 1998.

 116

• R. J. Higgins, Digital Signal Processing in VLSI, Prentice Hall, 1990.

• J. Kim, Y. Kim, “Performance Analysis and Tuning for a Single-Chip

Multiprocessor DSP”, IEEE Concurrency Journal, January-March 1997.

• I. Main, Factors to Consider when Choosing The Right DSP For The Job,

Electronic Design, June 8, 1998.

• Pan, Y. S. Oh, Y. S. Sohn, and R.H. Park, “Implementation of a fast hierarchical

motion vector estimation algorithm using mean pyramid on TMS320C80 DSP board”,

in Proc. 1998 International Technical Conference Circuits/Systems, Comput.

Commun., vol. I, pp. 171-174, Sokcho, Korea, July 1998.

• J. H. Park et al., "Implementation of the Navigation Parameter Extraction from the

Aerial Image Sequence on TMS320C80 DSP board," in Proc. 8th Int. Conf. Signal

Processing Applications & Technology, pp. 1562-1566, San Diego, CA, USA, Sep.

1997.

• Y.S. Sohn et al., “Implementation of a two-stage block matching algorithm using

integral projections on the TMS320C80 DSP Board”, in Proc. 8th International

Conference Signal Processing Applications & Technology, pp. 1213-1217, San Diego,

CA, USA, Sep. 1997.

• S.L. Wasson, Top-Down FPGA Design- A 12-Step Program: FPGA design flow

benefits from a structured design approach, Integrated System Design, January 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

