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Abstract

This dissertation describes the development of a distributed data-capture and
data-processing framework for use with a network-aware ground penetrating
radar. The software that was developed addresses weaknesses in existing data
processing software, with the main focus being on the distributed capabilities of
the framework. The framework was designed from an object oriented perspec-
tive, using the Unified Modeling Language to describe the architecture. The
Java programming language was used to implement the design. The Common
Object Request Broker Architecture was used as the messaging protocol, how-
ever the framework was designed such that an alternative messaging protocol
such as Java Remote Method Invocation could also be added at a later stage.
The Extensible Markup Language was used for storing data as well as configu-
ration information.

The framework was designed to be modular such that additional functionality
could be added later in the form of modules. Three modules were developed, a
data-viewer module, a data-persister module and a radar controller module.

Performance tests were completed to measure the maximum number of profiles
that could be transmitted per second for two scenarios, one involving a stand-
alone machine, and another involving two networked machines using 10 Mbit
ethernet. The highest data rate of 346 was achieved when there were no viewer
modules active in the system and no processing being applied. For a more
useful scenario involving the inverse Fourier transform and a data viewer, it
was found that the highest data rate was measured when the radar server was
located on a separate machine to the processing framework. The maximum data
rate measured under these circumstances was 177 profiles per second. Since the
maximum data rate that the radar hardware can currently support is ten profiles
per second, the data rate for the framework is more than sufficient.
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Chapter 1

Introduction

1.1 Summary

This document describes the development of a distributed, data-capture and
data-processing software framework for a network-aware ground penetrating
radar (GPR). The system acquires data from the GPR and pipes the data
through a web of interconnected nodes. Nodes can be distributed across the
network on co-operating computers, and each computer can host any number
of individual nodes. Data is processed as it arrives at each node in the web.
The system is designed to be highly configurable so that only the necessary
components need to be installed on any particular machine.

The system is written using the Java programming language. The Common
Object Request Broker Architecture (CORBA) is used to distribute components
across the network, as well as to provide connectivity between the framework
and the GPR.

The system addresses four key areas:

Data capture

Data processing

Data display

e Data persistence

A modular system was designed, containing modules that accomplished these
tasks which can then be combined at run-time to satisfy specific user require-
ments for varying situations.

Benchmarking tests were performed in order to obtain estimates for the perfor-
mance of the system under various scenarios. The data transfer rate measured
for the most common scenario involving two computers, one behaving as a radar
server and the other as a data processing and presentation machine, was 134
data profiles per second. This offers an estimation for the fastest rate at which
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the software can accept data. Currently the radar hardware can only produce
data at a rate of 10 data profiles per second, and hence the data rate measured
for the scenario indicated is acceptable.

The next section discusses the history of the GPR systems that are involved in
this project. An understanding of the history behind the current radar system is
useful in order to understand the development of the requirements specification
that was developed for this framework. Finally, this chapter ends with an outline
to the rest of the document.

1.2 Background

1.2.1 History and Motivation

The Radar Remote Sensing Group (RRSG) at the University of Cape Town
has been involved with Ground Penetrating Radar since 1990. The Subsurface
Research Group at the RRSG has designed and built a number of Stepped
Frequency Continuous Wave (SFCW) GPR systems. The GPR hardware that
has been developed captures raw data, which is then passed on to a PC for data
processing. For the case of SFCW GPR data, it is generally necessary to perform
some form of processing on the raw data before it can be presented to the user.
Initially, the radar hardware was connected to a PC via the serial port. An
application was written (in C++) that allowed radar users to control the data
acquisition process from the PC, and provided the required data processing and
data presentation. The application provided a Graphical User Interface (GUI)
to the user, while handling the serial communications to the radar hardware.
This application was called MDR.

As the radar hardware was developed further, it was decided that the radar
hardware be designed to be network-aware. This would allow the radar itself
to be attached to a network, and hence be reachable from anywhere else on
the network. The long term goal in this exercise would be to have the radar
hardware running an operating system on which a radar server could run. This
radar server would provide all the low level communications with the rest of the
radar hardware, while presenting one or more high level software interfaces to
the rest of the network. The radar would then be distributed in a client-server
paradigm. Client applications would be responsible for data processing and
display.

It was therefore necessary to modify the existing MDR application, since un-
der the new paradigm this application was performing both server-side func-
tions (serial communications) as well as client side functions (data display and
processing). A radar server was written that would take over the serial com-
munications function of MDR, however it would not provide any processing
functionality. Instead, it would provide a software interface to which a client
application could connect. It was decided to use the CORBA standard, which
would hence allow client applications written in any programming language to
still connect to the server. A Java version of MDR was then written which of-
fered data processing and data display functionality, but connected to the radar
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server via the CORBA interface. Java was chosen for the client-side application
since it is a platform independent language.

The Java version of MDR (known as JMDR) was frequently modified to accom-
modate new requirements until it offered a range of processing options along
with three different modes of data-capture. The process of writing JMDR, and
then maintaining it and revising it highlighted some of the problems with its
design, and provided a useful means of developing a set of user requirements for
a replacement application.

A client-side system was proposed that would replace the existing JMDR client
software. The system would be responsible for data acquisition, data processing,
data persistence and data presentation. It was proposed that this client side
system should satisfy the following two design goals:

1. The system should be modular so that modules could link together at
run-time, providing a particular user with a functionality tailored to his
requirements.

2. The system should be distributed. Modules should be able to run on
various hosts simultaneously, co-operating in the task of data capture and
processing. This would take full advantage of the fact that the radar itself
is network-aware, allowing sharing of data, and consequently sharing of
knowledge.

The scope of this dissertation is limited to the design and implementation of
this client-side system.

1.3 Thesis Outline

The rest of this dissertation shall focus on the design and implementation of
the proposed client-side system. As far as possible, this dissertation uses the
Unified Modeling Language (UML) as a standardised means for describing the
design of the system.

A review of the technologies and methods used in the dissertation is given in
chapter 2. These technologies include CORBA, Java, XML and the UML.
Chapter 2 serves only to give a brief overview of each technology, the reader is
referred to appropriate texts if a more thorough understanding is required.

The system requirements are developed in chapter 3. This chapter firstly re-
views existing GPR software, and then gives a brief summary of the processing
requirements for stepped frequency GPR data. A requirements specification is
then developed, and from this, a set of use cases are developed along with the
associated use case diagram.

A conceptual analysis of the system is developed in chapter 4. This results in
a conceptual model for the system being developed which helps introduce and
define terms that are used in the subsequent design.
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Chapter 5 describes the specification model for the system, which is basically
a definition of the interfaces that the system should implement, as well as a
description of how these interfaces should co-operate.

The implementation model is presented in chapter 6. This chapter describes
how the system was implemented, using UML class diagrams to document the
components of the system.

Chapter 7 describes the results that were obtained. Firstly, the results of the
implementation of the design are discussed. Secondly. the results of a couple
of performance tests are discussed in which the data rate was measured under
two different scenarios.

Chapter 8 is the concluding chapter, and it includes a section describing future
work that could be completed for the system.



Chapter 2

Review of Technologies and
Methods Used

This chapter introduces the technologies that are used to construct the system.
The purpose of this chapter is to familiarise the reader with the technologies that
were used in the system, before they are encountered in later chapters. It should
be noted that the order in which the chapters of this document occur does not
directly follow the order in which the system was designed and constructed, and
hence this chapter should not be seen as part of the design process. In particular,
the technologies mentioned in this chapter were selected for their applicability
to the design, the design was not developed to suit the technologies specifically.

The core technologies are discussed initially. They are CORBA and the Java
programming language. The Extensible Markup Language (XML) is then intro-
duced. A discussion of the Unified Modeling Language (UML) is also included
in this chapter, and following that is a discussion of the software development
method that was applied.

2.1 Common Object Request Broker Architec-
ture (CORBA)

CORBA is an industry wide standard for communication in a distributed object-
oriented environment. CORBA allows two systems written for different oper-
ating systems in different programming languages to successfully communicate
with each other. The CORBA standard was created by the OMG, however the
OMG leaves the implementation of the standard up to various vendors. Thus,
many vendors can provide CORBA implementations, however these different
implementations must all be able to intercommunicate for them to adhere to
the CORBA standard. This frees developers from getting locked into a par-
ticular vendor’s product. There are plenty of books written on CORBA, a
good introduction to CORBA can be found in the book by Orfali and Harkey
[12] which introduces CORBA from a Java programmer’s perspective. How-
ever, perhaps the most up to date information is available directly from the

5
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CORBA web site: http://www.corba.org and from the OMG’s home page:
http://www.omg.org.

CORBA offers an object-oriented approach to distributed system design. Us-
ing OMG’s Interface Definition Language (IDL), one describes an interface for
an object. This interface is completely implementation independent. The IDL
definition is then compiled to a particular implementing language, and an imple-
mentation of the interface is written in that target language. The implemented
object is then able to publish its interface on the network, and other applica-
tions implemented in different languages will be able to communicate with this
object via the interface described by the IDL. It should be noted that although
CORBA is object-oriented by design, it is quite simple to write a wrapper for
legacy systems, and have the wrapper implement an IDL interface thereby in-
corporating the legacy system into a larger, distributed, object-oriented system.

For these reasons, it was decided that CORBA should be considered for the
middleware in designing the data-acquisition and processing system.

2.2 The Java Programming Language

The Java programming language was developed by Sun Microsystems and an-
nounced to the public in 1995 [9]. The goal of the Java language is to be
completely platform independent. That is, programs written in Java and com-
piled under one operating system, should run without the need to recompile
under another operating system. Platform independence is achieved through
the use of a Virtual Machine (VM) that is written for a particular operating
system. This VM then interprets the byte codes that a Java program is com-
piled down to. This means that a Java program can only be run on an operating
system for which there is a VM described. There are however a large number
of VMs available for existing operating systems. Both Windows and Linux are
supported by Sun Microsystems who provides development kits for both these
platforms. The development kit includes the VM along with development tools
such as compilers. While portability is dependent on the existence of a VM for
a particular platform, Java still offers the most comprehensive solution to the
problem of code portability. As long as a Java application has been written
from the start to take advantage of Java’s platform independent features, and
it is run on a VM that adheres to the standard Java Application Programmers
Interface (API), then the application will be platform independent.

Java’s platform independence holds many more consequences that are not im-
mediately apparent. Firstly, an extensive Graphical User Interface library is
provided that is available on every platform. This is a huge step from C/C++,
where one can easily get locked into using some vendor’s GUI toolkit under
Windows, and then have to rewrite the GUI completely when the application
is ported to Linux. Java also provides an extensive networking package that
is distributed as a core part of every VM. Again, this standardises the way of
writing applications that communicate via the network. A developer does not
have to search for libraries for Linux so that he can port his Windows applica-
tion. For more information on features that are part of the Java VM, the Java
home page is the most up to date location: http://www. java.sun. com.
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Java’s platform independence combined with CORBA’s language independence
make a powerful combination. These two technologies were selected to be used
in the solution to the distributed data acquisition and processing problem for
the following two reasons:

1. Java frees both the user and the developer from a particular operating
system.

2. CORBA frees the developer from a particular language.

The second point might seem a bit obscure at first, especially since Java has
been selected as the programming language to be used. It should be remembered
however that the system discussed in this dissertation is simply the client side
of a larger system. By using CORBA to describe the interface to the radar
server, it will be possible to completely rewrite the implementation of the server
in a new programming language without having to alter anything in the client
system. For the case of the GPR described in chapter 1, the radar server was
required to manipulate platform dependent hardware, and hence Java was not
an appropriate language for the server. However, since CORBA was being used
as the middleware, it was still possible to write the client data capture and
display software (JMDR) in Java.

2.3 Extensible Markup Language (XML)

XML is a markup language very similar in structure to HTML. HTML is actually
viewed as a subset of the more general XML. XML is simply a standard format
for textual data. XML is more accurately described as a metalanguage - a
language that can be used to define new markup languages. XML by itself
does not achieve anything of value - it is not possible to develop a program
using only XML. The power of XML is in what a developer chooses to apply
it to. One of the main advantages of XML is that it is a platform independent
format, which allows programs developed for different operating systems to use
the same data format. There would be no need for data formats to be converted
between operating systems. HTML is an example of how useful this platform
independence can be. Web servers can run under Unix/Linux, while serving
HTML pages to Microsoft Windows clients as well as to Apple Macintosh clients.

A good reference describing XML and how Java applications can best use XML
is the book by Brett McLaughlin [11]. There is also plenty of information to
be found on the internet, a good starting point for this is the following website:
http://www.xml.org.

2.4 The Unified Modeling Language (UML)

As was mentioned in chapter 1, this dissertation shall rely on the use of the UML
to document the design process. The UML was developed by Booch, Rumbaugh
and Jacobson, and was standardised by the Object Management Group (OMG)
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in 1997 [1, pg 4]. It is an object-oriented modeling language, and as such does
not specify or promote a particular software development process, it is simply
used to describe a system in the same way an architect’s blueprint describes a
building.

The UML was selected as the modeling language of choice since it has been
standardised, and is programming-language independent. The rest of this dis-
sertation is written under the assumption that the reader is familiar with the
basics of the UML notation. The UML is mostly a graphical language, and as
such much of it can be understood without a thorough understanding of the
UML. For a concise and informative introduction to the UML, the reader is
advised to read Martin Fowler’s UML Distilled [1].

2.5 The Software Development Method

A software development method describes the steps taken during the develop-
ment of a software project. A software development method usually consists
of a process and a notation [1, pg 1]. The notation is a graphical language for
describing concepts used in the process. Many books have been written on devel-
opment methods. The OMG developed a book [4] that summarises 21 methods
of software development. Jacobson [2], Booch [6] and Rumbaugh [3] have all
authored books covering this subject. With the bewildering choice of software
development methods available, it is difficult to select one that is applicable.
It is further proposed by Fowler [1, pg 14] that development teams develop
their own methods tailored to their particular needs. Therefore, in developing
the system described in this dissertation, there was no strict adherence to any
particular documented development method. Rather, ideas and concepts were
taken from the documented methods and used to solve problems encountered
during the design process. Since the development of this system was conducted
by a very small group consisting of two people, the application of some method
intended for a larger group of developers would have been inappropriate.

The many methods that have been proposed over the years each offer an accom-
panying notation. Since the notation is important for communication, a move
was made to develop a standardised notation, and the result was the UML. The
UML therefore does not specify a particular process. The UML can be used
successfully with any development process, and in fact should be used since it
enables better communication between developers. For this reason, the UML
has been used in the development of the system described in this dissertation.

The development process that was adopted is based loosely on a process de-
scribed by Fowler [1, pg 13]. The process described by Fowler is an iterative
process. It is generally accepted that the development process must be an itera-
tive process. Rumbaugh [3, pg 166] makes the following statement: “The entire
software development process is one of continual iteration; different parts of a
model are often at different stages of completion”. Further, Fowler’s process is
incremental. The construction phase of the process is characterised by a num-
ber of iterations, with each iteration ending in the release of production-quality
software that satisfies a subset of the project requirements. This process of
satisfying a subset of requirements by the end of each iteration is also found in
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Inception |—| Elaboration |—p Torsim;d;o? L »| Transition
1(2]3]...

Figure 2.1: Outline Development Process

the Extreme Programming (XP) method developed by Kent Beck [5]. Fowler’s
process is summarised in Figure 2.1.

Figure 2.1 shows the construction phase as a series of steps, where each step is
an iteration resulting in a production quality solution to a subset of the user
requirements. Although the figure does not explicitly indicate iterations in the
other phases, this does not preclude any iterations occurring during the incep-
tion and elaboration phase. In fact, there will most likely be iterations during
the elaboration phase which is where the user requirements are developed.

2.6 Conclusion

For the benefit of the reader, this chapter introduced the various technologies
that have been applied in the construction of the system. However, the final
decision on which technologies would be suitable for the design was not taken
before considerable thought was given to the system. It is only in retrospect
that this chapter is able to introduce these technologies up front, and indicate
reasons for the choice of technology.

The Java programming language was selected as the programming language
in which to develop the entire system. Java was chosen since it is platform
independent. Note that the system being developed is effectively the client-side
of a larger system which includes the radar server and radar hardware.

CORBA was selected as the middleware for the system. The main reason for
using CORBA is its language independence. This feature is useful if portions of
the system need to be implemented in a different programming language. This
was particularly convenient for making the connection to the radar server which
already supported a CORBA interface.

XML was selected as a platform and language independent format in which to
store data and configuration information.
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The UML was used to document the design of the system. The UML was
selected since it is a standard modeling language for describing object oriented
systems.

The software development process that was followed was loosely based on a
process described by Martin Fowler [1].



Chapter 3

Requirements Analysis

This chapter develops the system requirements. The driving force in developing
the requirements for this system was the experience obtained while develop-
ing and maintaining the JMDR application. As JMDR was developed, more
requirements were requested by the end users, and other requirements were
identified by the developer. However, JMDR was originally developed as a Java
version of MDR, and both applications operated in a similar way to many other
existing GPR data processing applications. Therefore, this chapter begins with
a review of existing GPR data processing software. The aim of this review is
to highlight some of the requirements that this system shall attempt to address
that other applications (including JMDR) have not attempted to address. This
review is completed with a look at the limitations of these systems.

Section 3.2 then offers an overview of the processing requirements for Stepped
Frequency GPR (SFGPR). SFGPR requires more processing than conventional
GPR and this extra processing must be reflected in the user requirements.

The sections described above are then used to formulate a requirements spec-
ification which is given in section 3.3. This is a formalisation of the ideas and
goals introduced in sections 3.1 and 3.2.

Finally, the UML is used to document the use cases for the system as a whole.
The actors for the system are identified along with the use cases which sum-
marise how the actors interact with the system.

3.1 Review of Existing Software

3.1.1 Overview of available software

There are generally two types of software that can be found for GPR data
processing.

1. GPR system specific software: Commercial GPR system providers offer
proprietary software with their GPR systems. This software provides data

11
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acquisition functionality, and usually offers some data processing function-
ality as well.

2. Generic processing software: Software packages are available that offer
various processing options that can be applied to a number of data types.
This type of software would not offer data acquisition options, but al-
lows users to apply post-processing to data sets that have already been
acquired.

This section will discuss existing software packages from both categories. No
attempt is made to review any of the software products listed below since most
of the products are commercial and hence are unavailable for testing. The
information gathered in this section is simply information made available by
the various organisations on their respective websites.

The following organisations offer software of the type mentioned in item 1 above.
They offer complete GPR systems, radar hardware as well as supporting soft-
ware:

Sensors And Software

Sensors and Software is a commercial company focussed on providing various
systems for GPR. Their GPR systems at present are all based on the pulsed-
radar technique. The software that comes with the radar system is proprietary,
and offers data acquisition along with various processing options.

http://www.sensoft.oc.ca

Ingegneira dei Sistemi S.p.A (IDS)

IDS is a commercial company that manufacture and distribute their own GPR
system. There are three software applications that are offered with their radar,
a data acquisition application, and on-site data processing application, and a
powerful off-site data elaboration application.

All packages run under Windows, with each application supplying the following
functionality:

1. IDSGrasWin: Multi-channel data capture; IDS Georadar offers support
for multichannel data acquisition.

2. IDSGresWin: On-site data visualization and basic processing.

3. IDSGred V.4.0: Off-site data elaboration and generation of cartographic
outputs.

IDSGred is a powerful data processing application that requires 2 monitors and
a database in order to function. This is why IDS specify IDSGred as an off-site
application, while the simpler IDSGresWin application is specified as an on-site
application.

http://www.ids-spa.it
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Geophysical Survey Systems, Inc. (GSSI)

GSSI is a commercial company focusing on the development and manufacture of
GPR systems as well as electromagnetic induction instruments. They market a
variety of GPR systems with various features, however they all follow a similar
trend in terms of data acquisition and processing. The radar hardware for each
GPR includes a portable monitor on which the data can be viewed as it is
captured. The data can then be transferred to a PC where it can be processed
under their proprietary post-processing software. The package that GSSI has
developed for this purpose is called RADAN. It operates under Windows, and
offers various processing options such as noise filters and gain functions. GSSI
also supply add-on modules that are designed for specific applications such as
Bridge Assessment and Road Structure Assessment.

http://www.geophysical.com/

The following organisations supply software only:

Roadscanners

Roadscanners is a commercial company specialised in condition surveys and
rehabilitation design of roads, bridges, airports and railways. They focus on the
use of GPR to facilitate these activities, and have developed various software
applications to support their consulting activities. Their most powerful tool
is named Road Doctor. Road Doctor runs under Windows, and provides a
standard Windows GUI. Apart from plotting the actual GPR data in a variety
of ways, it also provides the ability to play back videos of the actual data
acquisition process. It can also show maps of the site under inspection. The
processing tools available with Road Doctor are geared toward road condition
analysis.

http://www.roadscanners.com

Interpex

Interpex is a commercial software company that produces software for the pro-
cessing, interpretation and display of geophysical data. They offer two software
products developed particularly for GPR data, GPR IXeTerra and GRADIX.
IXeTerra runs under Windows while GRADIX runs under DOS. Both products
are used for post-processing, in that data is first captured from a radar and
stored on disk, and is then later imported into the programs to be processed.
Both products are able to import data in various formats including the formats
produced by GSSI, Sensors and Software and Mala Geoscience radars.

http://www.interpex.com/radar.htm

Center for Wave Phenomena, Colorado School of Mines (CWP)

CWP maintain a package called Seismic Unix (SU) that is an instant seismic
processing and research environment. SU can be compiled to run under any
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Unix system, and is offered free of charge. SU consists of a number of small
utilities that accomplish very specific tasks. In order to accomplish a more
complex task, the utilities are piped together in Unix fashion. This means that
while the name of the package implies that it offers only seismic processing,
the individual processing utilities might be combined to accomplish a range of
wave-related processing. SU is a departure from the type of software discussed
up to this point in that it does not offer a central GUI from which to process
and view data. Rather, the individual utilities form extensions to the Unix
operating system, and are piped together on the command-line, or in a script,
to accomplish a particular task.

http://www.cwp.mines.edu/cwpcodes/index.html

Sandmeier Scientific Software

Scientific Software maintains Reflexw, a data processing and presentation pro-
gram for various types of wave data. Reflexw is modular in design, and GPR
specific modules can be incorporated that provide useful GPR-specific process-
ing options. Reflexw imports data from various formats, including formats
produced by GSSI and Sensors and Software radars. As with Interpex software,
Reflexw is used for post-processing of data that has already been acquired.

http://www.ka.shuttle.de/software/index.html

Parallel Geoscience Corporation

Parallel Geoscience Corporation is a commercial company focusing on develop-
ing geophysical data analysis software tools for the field and desktop computing
environments. They have developed the Seismic Processing Workshop (SPW)
which is a family of interactive seismic data processing packages. They offer a
specialised package developed for GPR data processing. This package is able to
import data from GSSI, Sensors and Software, Mala and Koden radars.

3.1.2 Limitations

As was described in chapter 1, an application called JMDR, was developed that
loosely resembled many of the GPR data processing applications described
above. The process of firstly writing the application, and then maintaining
it through various feature requests from the end users highlighted the various
limitations inherent in many GPR data processing applications. Some of these
limitations are discussed in the points that follow.

Graphical User Interface dependence

JMDR was written around its Graphical User Interface (GUI). This in itself
is a limitation since this is a poor design technique. However, even though
other GPR applications might not be as tightly coupled to their GUI as JMDR
is, their GUI is still the main focus of the application. For applications that
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might be operated in the field in order to provide real time processing, this
can be limiting since display facilities in the field are often quite limited. If
no processing at all is required in the field, then it is still necessary to have a
display simply to show the GUI to the user so that the data acquisition process
can be controlled.

Complicated functionality

Many of the GPR applications, JMDR included, offer quite a variety of tasks
that can be accomplished. The tasks range from acquiring data from the radar,
processing the data, viewing the data, and saving the data to some storage
device. Each task requires its own set of GUI controls. A recurring problem
while maintaining JMDR was the organisation of the GUI to best group these
controls. Whether they are concentrated in one window, or whether they are
spread between multiple dialogs, the problem still remains that there are many
GUI controls available for the user to try and understand. The more functional-
ity an application offers, the more complicated the GUI ends up being, and this
can result in new users requiring extra time and training to become acquainted
with the application, even if the new user is not going to be using the extra
functionality. The solution to this problem is to cut out all of the GUI controls
that are not necessary for a particular task. The user is then not confronted
with a bewildering array of buttons and option boxes when all he wants to do
is capture some data from the radar.

Limited data sharing

JMDR and other similar applications do not offer much opportunity to dis-
tribute data to other applications and other users. For the most part, data is
acquired directly from the radar, it is processed by the application, and saved to
disk. If another application requires the data, then this data is imported from
file that it was written to. There is no option for another application to obtain
the data directly from the GPR application. Furthermore, data obtained on-site
cannot be shared immediately with users off-site. In the case where an expert
in GPR data interpretation is unavailable on-site, the data has to be transferred
to a place where the expert can view it and offer advice in its interpretation.
It would be more convenient if the expert user were able to view the data as
soon as it is acquired from the radar. One GPR expert could then oversee the
data interpretation occurring at multiple geographically remote locations. This
would only be possible given that there is a suitable communications link to the
site.

3.2 Overview of Stepped Frequency Continuous
Wave GPR Processing Requirements

This section offers a brief overview of the processing requirements for Stepped
Frequency Continuous Wave (SFCW) signals. The processing requirements for
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SFCW GPR data differ slightly from pulsed GPR, and consequently affect the
user requirements of the system being designed. Since most of the GPR software
mentioned in section 3.1 is written for pulsed GPR, this section aims to clarify
the specific data processing requirements that the system will have to address.

Mensa [16] and Wehner [15] both describe the use of Stepped Frequency Contin-
uous Wave (SFCW) signals for conventional radar. They cover the mathematics
required for applying this technique. Noon [13] and Farquharson [14] describe
SFCW applied to ground penetrating radar. These texts develop the mathe-
matics applied to the GPR context. This section will simply discuss the results
in order to familiarise the reader with some of the processing requirements for
SFCW GPR. This is necessary since the processing requirements impact on the
design of the software.

Pulsed GPR systems operate by transmitting a pulse of electromagnetic energy,
and measuring the delay between the transmitted pulse and the reception of
the reflected pulse. This delay can be converted into a depth measurement if
the velocity of light within the medium is known. Pulsed GPR systems hence
attempt to measure the impulse response of the medium by approximating the
transmission of an impulse waveform.

SFCW radars operate by transmitting a single tone that is stepped through a
range of discrete frequencies. At each frequency, the reflected signal’s magnitude
and phase relative to the transmitted signal is measured. A convenient means
of describing the principle behind the SFCW technique would be to say that
SFCW GPR attempts to measure the frequency response of the medium by
sampling the frequency response at discrete frequencies. This sampled frequency
domain representation can then be transformed using Fourier theory into the
time domain to achieve a time domain signal which is therefore an approximation
to the impulse response of the medium. This impulse response is the same
impulse response that conventional pulsed GPR attempts to measure directly.

One of the advantages of the SFCW technique is that a larger bandwidth can
be synthesised using the SFCW waveform than can be achieved using a pulsed
waveform. A possible disadvantage to the SFCW technique is that raw data
obtained directly from the SFCW radar requires processing before it can be
presented visually to the user. Since raw data obtained from pulsed GPR radars
is already in the time domain, it is generally possible to make sense of the data
without any processing.

Thus, in order to visualise SFCW GPR data there is the minimum requirement
that the data should be processed using an inverse Fourier transform. Coupled
with this Fourier transform is the optional use of a windowing function to limit
the sidelobes that are generated during the transform.

Once the inverse Fourier transform has been applied, the SFCW GPR data is
essentially time domain data, and there is the potential to apply other data
processing routines that are applicable to pulsed GPR data, such as range-gain
control and background subtraction.
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3.3 Requirements Specification

This section summarises the requirements that have been developed for this
system. The set of use cases that are developed explore these requirements in
more detail. This section is provided mainly to offer a high level overview of
the problems that this system is required to address.

Ivar Jacobson [2] states that two models are developed during the analysis of
a problem; the requirements model and the analysis model. It is important
that the requirements model be the real base from which to develop the sys-
tem. In developing the requirements model, little heed should be paid to the
implementation environment since this guarantees that the resulting system de-
sign is based upon the problem, not upon the conditions prevailing during the
implementation.

The requirements specified here have been developed to overcome two problem
areas. The first problem area is the general requirements of a GPR data pro-
cessing application, for example, that the user must be able to process the data,
and save the data. The second problem area is the solution of specific problems
that have been identified, some of which have been discussed in section 3.1.2.

Related requirements have been grouped together in the following subsections:

General General expectations of the system from a user’s point of view.

System specific Requirements that are system specific.

3.3.1 General User Requirements

These requirements reflect the general expectations that a user of any GPR
software would have of the system.

Data Acquisition The system shall offer a means by which a user can acquire
data directly from the radar hardware.

Data Processing The system shall process the acquired data by means of a
set of predefined routines that the system shall provide. These routines
must include at minimum a windowing routine, and an inverse Fourier
transform routine.

Data Persistence The system shall offer a means of persisting the data. The
data along with the processing history shall be persisted together so that
at later time the user can import the data and examine the processing
that was applied to it.

Data Display The system shall have the ability to offer the user a display
of the data under examination. The view of the data should include a
pseudo-colour representation of the data.
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3.3.2 System Specific Requirements

These requirements are specific to the system being designed, in that they are
requirements that stem from particular hardware features, and they are also
requirements that are derived from the limitations discussed in section 3.1.2.

Network collaboration The system should be network aware. Users con-
nected to the network should be able to share data within the framework
of the system. A user should be able to obtain data directly from other
participating users connected to the network, process that data and then
pass it on to other users connected to the network..

Remote control A user with the correct authorisation should be able to con-
trol the system from anywhere on the network. This includes control over
the radar hardware, and over the data distribution process, as well as
configuration of any remote host controlled by the user.

Display independence It should be possible for the system to be configured
according to the environment in which it will run, so that if there is no
display, then the system simply runs without a display. Interaction with
the system when there is no display shall then be achieved via the network.
For example, a user situated in front of a desktop PC would be able to
interact with a GUI front-end that communicates across the network with
the system running on a computer in the field lacking a suitable display.

Functionally configurable The system should be configurable to suit the
functional requirements of a particular class of user. For example, a user
who is only going to be capturing data in the field and has no experience
in actual data interpretation should not even be offered the option of per-
forming some complex data processing. The simpler the interface offered
to such a user, the quicker such a user is able to master the use of the
interface. This configuration should be done once by an experienced user,
possibly via a configuration script, so that when the inexperienced user
starts the application up the required interface is already operational.

3.4 UML Use Case Analysis

The requirements described above were mapped to UML use cases and illus-
trated using use case diagrams. A use case is described by Fowler [1] as a
typical interaction between a user and a computer system. A use case diagram
is a graphical means of relating use cases to actors.

An actor is a role that a user assumes with respect to the system [1]. One user
might take on various roles while interacting with the system, depending on
what goal he wishes to achieve. A use case diagram is used to indicate how
actors interact with the system by showing which use cases each actor uses.

In developing a set of use cases, it is important that the use cases reflect the goals
required from the user’s point of view, not from the developer’s point of view.
Fowler [1, pg 44] differentiates between these two points of view by using the
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terms user goal and system interaction. Larman [8] also makes this distinction
by identifying use cases as being either essential or real. An essential use case
is a use case that achieves a user goal, hence Fowler’s user goal is synonymous
with Larman’s essential use case. In particular, Larman states that an essential
use case remains relatively free of technology and implementation details [8, pg
58]. On the other hand, a real use case ”describes the process in terms of its
real current design, committed to specific input and output technologies, and so
on.” [8, pg 59]. Larman’s real use case is therefore equivalent to Fowler’s system
interaction. Larman’s terms shall be used from this point on simply because
they can be used more clearly to identify the nature of a particular use case.

In order to design a system that satisfies the end users’ requirements, it is clear
that one should first develop the essential use cases before defining real use cases.
The essential use cases will reflect abstract goals that users might require of any
GPR data processing package. The set of essential use cases should therefore
offer a summary of the high level capabilities of the system. The essential use
cases for the system are developed in section 3.4.2.

The set of real use cases offer insight into how the essential use cases are achieved
by the particular application. It is the set of real use cases that will show how
this system aims to differ from existing GPR applications. Specific issues that
this system aims to address, such as live data distribution across the network,
are reflected by the real use cases. Section 3.4.3 develops the set of real use
cases for this system.

However, Fowler suggests that in developing the requirements for a system, one
should begin by identifying potential actors in the system before describing the
potential use cases. Identifying potential actors in a system is the starting point
of an iterative process through which the descriptions of actors are explored
and the use cases are defined. This iterative nature cannot be reflected in a
document which is linear by nature, and so the reader should bear in mind that
the definitions given later in this chapter for the actors and the use cases in the
system were not achieved in a single step. Section 3.4.1 describes the actors
that were identified for the system

3.4.1 Actors

An actor definition describes the role that a user might assume when interacting
with the software. The most concise representation that was found consisted
of three actors; an Observer, an Operator and a Power User. They are defined
such that the Operator is a generalisation of the Power User, and the Observer
is a generalisation of the Operator. They are defined more clearly as follows:

Observer An Observer is a user that requires the most basic level of interaction
with the system. An observer might be able to view GPR data made
available to him/her, process it locally for him/herself and possibly store
it locally.

Operator An Operator is an actor that extends the abilities of the Observer
actor. This means that an Operator would be able to potentially do
anything that an Observer is able to do, along with some added abilities.
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The main interaction an Operator would perform with the system would
be to control the data acquisition process. The data acquisition process
is the actual transfer of data from the radar server into the application
itself.

Power User A Power User is an actor or role that an experienced user might
assume in order to accomplish a specific task. As an example, an Operator
is simply a user given the power to control the data acquisition process.
There is no implied skill that the Operator must have. In an extreme case,
an Operator might only understand how to start taking a measurement
and how to stop taking a measurement. If the radar requires configuration
that this Operator is not capable of providing, then an experienced user
who understands the radar configuration would interact with the system
in the role of a Power User in order to manage the radar configuration.
The Power User actor is an extension of the Operator actor, since the
Power User is also able to perform any operation that the Operator may
perform, which hence also implies that the Power User is able to perform
all the operations that the Observer is able to perform.

It can now be seen that the requirements described in section 3.3 that depend
on the level of experience of the user can now be described more easily by the
use of the three actors defined above. It should be noted that a user would
most often interact with the system in the role of an Observer. It is only when
more specialised goals are required by the user that the user would assume a
different role. This shall be clarified once the use cases have been discussed in
the following section.

3.4.2 Essential Use Case Analysis

As was pointed out at the beginning of this section, there are two types of use
cases; essential use cases and real use cases. This section shall develop the set
of essential use cases required for the system. The essential use cases developed
here are then used in the derivation of the real use cases discussed in section
3.4.3.

Section 3.3.1 outlines the general user requirements for this system. These
requirements are used to develop the set of essential use cases. The four re-
quirements map directly to four essential use cases as can be seen below. Two
more essential use cases were identified that support the other four use cases,
but which would not necessarily be identified immediately as user goals. These
two use cases are the Configure use case, and the Distribute Data use case. The
essential use cases are therefore:

1. Acquire Data
2. Process Data

3. View Data

4. Persist Data
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Figure 3.1: Use Case diagram showing actors and the basic functionality they
require

5. Configure

6. Distribute Data

This set of use cases represents the end goals that are required by users of the
system. Each use case captures a specific goal that a GPR user might wish
to achieve. The use cases specified above do not imply the use of any specific
technology. As an example, consider use case 4, Persist Data; no storage device
is specified, and so the use case could be implemented using a simple file, a
database or any other means of long term storage.

Table 3.1 describes the set of essential use cases in a format similar to the format
used by Larman [8, pg 49].

There are many more actual operations that a user might want to perform,
however each of these operations can be related back to one of these six use cases.
As an example, the use case Setup Processor could be identified. However, this
use case can fall under the more general use case of Configuration. Hence, these
six use cases form the key use cases for the entire system.

In Table 3.1, the Type field specifies that each use case is both essential and
primary. The value primary is used to indicate the priority of the use case. The
priority is used in order to determine which use cases should be implemented
first in the construction phase. All of the above use cases are prioritised as
primary since each use case is required in the final construction.

Figure 3.1 shows the basic use case diagram for the entire system. This diagram
shows the six use cases that were specified in the previous section, as well as a
further two use cases that are used to illustrate how more specific operations
are related back to one of the six primary use cases.
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| 1| Use Case | Acquire Data
Actors Operator
Type primary, essential
Description | An Operator initiates a measurement session with the
radar. The Operator maintains control over data acquisi-
tion process until the Operator terminates the measurement
session.
| 2 [ Use Case Process Data
Actors Observer
Type primary, essential
Description | An Observer indicates the type of data processing required.
When data is distributed to the Observer, the data is pro-
cessed according to the Observer’s requirement,.
| 3 [ Use Case View Data
Actors Observer
Type primary, essential
Description | An Observer is presented with different views of the data.
The Observer has limited control over which views are pre-
sented.
| 4 | Use Case Persist Data
Actors Observer
Type primary, essential
Description | An Observer indicates the data that should be persisted.
This indication can be implied, resulting in automated data
persistence.
| 5 | Use Case Configure
Actors Observer
Type primary, essential
Description | An Observer indicates specific configuration options. The
actual configuration options that are available to an Ob-
server are limited according to the level of ability of the
particular Observer.
| 6 [ Use Case Distribute Data
Actors Observer
Type primary, essential
Description | An Observer specifies that he wishes to share data across
the network. The Observer is able to import data from
across the network as well as indicate what data should be
made available across the network.

Table 3.1: Primary Use Cases
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The two extra use cases are Configure Hardware and Configure Software. They
are related to the Configure use case through the use of the include UML stereo-
type. The include stereotype indicates that the functionality of the two included
use cases is used in the Configure use case.

Figure 3.1 shows how the actors defined above interact with the system. From
the diagram it might appear that the Observer actor can perform more oper-
ations than the Operator and Power User actors are able to, but it must be
remembered that the Operator and Power User actors can in fact interact with
all the use cases that the Observer actor can since they are extensions of the
Observer actor. This is indicated on the diagram by the generalisation arrows
linking the three actors. At this level of abstraction, the Power User does not
appear to extend the Operator actor at all. The use cases that are accessible
only by the Power User are visible at lower levels of abstraction. For example,
only a Power User should perform the radar hardware configuration, depicted
by the Configure Hardware use case. In the implementation of the more general
Configure use case, the Configure Hardware use case will only be included if
the actor involved is a Power User. This conditional behaviour does not get
captured in the Use Case diagram, since it is modeled at a lower level by UML
activity diagrams.

3.4.3 Real Use Case Analysis

The real use cases discussed by Larman often include detail describing the exact
interactions that the user makes with the system. For instance, where there is
a GUI involved he will specify what fields in the GUI the user must complete
and which buttons the user should press. This is relevant where it is possible to
define at the start what mechanism the user shall use to interact with the system.
The difficulty with this system is that there is no predefined GUI that the user
should be offered. There might not even be a GUI, the user might be interacting
with the system via a command line interpreter. Since the design of this system
is expected to be modular, with certain modules being implemented later in
the system’s life cycle, these types of low level use cases will have to be defined
closer to the time. As an example, consider the requirement that the system be
configurable through the use of a configuration script. This configuration script
may describe how the GUI itself will appear to the user at run-time. It would
therefore be inaccurate to describe how the user should interact with the GUI
when the GUI itself might change from execution to execution.

For this reason, the real use cases described here might still appear more abstract
than one might expect. Specific modules will require their own set of use cases
to be developed. Furthermore, since the precise specification of many of the
real use cases depend upon concepts developed in the conceptual analysis of the
problem, the details of these use cases shall not be discussed here.

Six real use cases were identified that closely match the six essential use cases.
The six real use cases are described below in the high-level format proposed by
Larman [8].
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1

Use Case
Actors
Type
Description

Use Case
Actors
Type
Description

Use Case
Actors
Type
Description

Use Case
Actors
Type
Description

Obtain Data

Observer

real

The Observer chooses a host on the network from which
to receive data from. The Observer makes a connection to
the host, and all the data that is available on the host is
transferred tot he Observer’s platform. The connection is
maintained until the Observer explicitly disconnects from
the host. Data is transferred to the Observer’s platform as
an entire data set if an entire data set is available, otherwise
data is transferred profile by profile, as each profile becomes
available.

Offer Data

Observer

real

The Observer indicates the data which he wishes to make
available on the network.

Configure Processing

Observer

real

The Observer specifies the processing that he requires by
choosing from a set of predefined available processing rou-
tines. The Observer has control over which particular rou-
tines shall be applied, the setup parameters for each rou-
tine, and the order in which the routines are applied to the
data.

Persist Data

Observer

real

The Observer indicates how the data shall be persisted,
whether it should be persisted on a profile-by-profile basis,
or whether it can simply be persisted on completion of a
data set. The Observer does not need to explicitly indicate
when the data should be persisted, data should automati-
cally be persisted once the user has indicated the method
by which this persistence shall occur.
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5 Use Case View Data
Actors Observer
Type real
Description  The Observer is offered a view of the current data set. The
Observer has controls such as zooming and panning. The
view should update to include new data as data is obtained
from another host.

6 Use Case Acquire Data

Actors Operator

Type real

Description The Operator controls the acquisition of data from the
radar hardware. The Operator begins by specifying the
azimuth step size, and any comments about the measure-
ment site. Profiles are then obtained either automatically
or manually, and the Operator then indicates that the mea-
surement session is closed.

3.5 Conclusion

This chapter has developed the user requirements for the system. The require-
ments were developed mainly from the experience gained through the devel-
opment of the JMDR application, as well as from limitations identified while
using JMDR and investigating existing data processing applications. Among
the limitations identified were the reliance of the applications on their GUIs,
their complicated functionality and their limited capabilities for the sharing of
data.

The requirements specification was then developed to address these limitations,
as well as to address the further processing that SFGPR data requires. The
requirements were divided into two areas: a set of general user requirements,
and a set of system specific requirements. The system specific requirements were
identified as those requirements that were unique to this particular system.

A set of actors and use cases were identified and described in section 3.4. Two
sets of use cases were described: a set of essential use cases and a set of real use
cases. The essential use cases summarise the abstract goals that a user expects
from the system, while the real use cases summarise more concrete goals that
are more dependent on the implementation environment (for example, GUI
interactions).

The set of real use cases that were developed above are the link between the
abstract, essential use cases and the actual design and implementation of the
system that is discussed in the following chapters.
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Conceptual Analysis

4.1 Introduction

This chapter focuses on using object oriented concepts to describe the concep-
tual model of the system. The conceptual model is a model that describes how
the system can be viewed from a completely abstract point of view. No im-
plementation details are presented in this chapter since the conceptual model
is used to obtain an understanding of the problem domain, not to solve the
underlying problem.

Fowler [1, pg 55] introduces three perspectives from which to approach the de-
sign of an object oriented project. He identifies the conceptual, specification,
and implementation perspectives. The conceptual perspective concentrates on
the concepts of the domain under study. UML class diagrams are usually used
for this perspective, and while there is a relation between the classes described
from the conceptual perspective and the classes that implement them in the im-
plementation perspective, there is usually no direct mapping. Fowler states that
”a conceptual model should be drawn with little or no regard for the software
that might implement it, so that it can be considered language-independent”.
Larman refers to the model that is drawn from the conceptual perspective as
the conceptual model, defining the conceptual model as the ”representation of
concepts in a problem domain” [8, pg 87]. For the purpose of this chapter how-
ever, strict UML notation will not be used since some of the ideas can be easily
expressed without UML class diagrams. This is beneficial to the reader that
does not have a full grasp of the UML notation.

This chapter describes the conceptual model for the system. Concepts that are
used throughout the design are introduced here. Firstly, the abstract concept
of data flow is introduced. It is shown that data flows between various points
distributed geographically, and that this data is modified as it flows. The discus-
sion of data flow introduces objects that participate in this data flow. Section
4.3 formalises the definitions for these objects, defining a set of key concepts
which make up the conceptual design.

26
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Figure 4.1: Conceptual Model

4.2 Data Flow

One of the key concepts for this system design is the concept of data flow. Data
can be said to flow from the radar hardware out to the interested users. Data
flows through points along the way where it can be processed, and where the
data flow can fork into two separate paths. Figure 4.1 illustrates these ideas
by proposing a hypothetical situation in which there are four physically distinct
hosts or platforms. One of these platforms is the radar hardware (or radar
server), and this platform is the source from which the data starts flowing. The
three other platforms could be desktop computers. The following can be seen
from the diagram:

1. Data is generated by the radar hardware.

2. The data flows to a point on a PC labelled Host A.

3. The data flows through a processor (which performs the inverse Fourier
transform).

4. Data flows to another point on Host A.

5. At this point, the data flow forks into three flows. Two flows are directed
to Host B, and one flow is directed to Host C.

6. Host B and Host C are now free to direct the incoming data-flows in their
own, customised fashion.

Figure 4.1 is really a simplified UML collaboration diagram, where each box
indicates a unique object. The objects depicted in the diagram are described as
follows:
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Radar Hardware The platform on which the radar server is running. This
could be a desktop computer, however ultimately this would be an em-
bedded operating system with a link to the network.

bufferNode A bufferNode is a point in the data-flow where data is buffered
before being transmitted further. The data that is buffered at a bufferNode
can then be used for various purposes such as viewing and persistence. A
bufferNode has one input and multiple outputs, allowing one data flow to
be forked into multiple flows.

processor A processor is an object that performs some processing on the data
flow. A processor has one input and one output.

viewer A viewer is an object that provides a graphical interpretation of the
data. It does not interact with the actual data flow at all. It connects
to a bufferNode and displays the data that is buffered at the bufferNode.
This is an example for how other objects would interact with the bufferN-
ode objects. For example, an object that performs some form of data
persistence would connect to a bufferNode in the same way as the viewer
object. The persister object would only interact with the bufferNode and
would not interact with the data flow either, persisting only the data that
is buffered at the bufferNode.

The concept of the data flow should be kept in mind when considering the rest
of the system, however this concept is purely abstract. It exists through the
interaction of the objects depicted in the figure, but there is no actual ”data
flow” object. The objects depicted in the figure are the basic concepts from
which the system is designed. The next section defines these concepts more
clearly.

Figure 4.1 shows the four distinct platforms only to emphasise the fact that this
system is required to be distributed. From the point of view of the bufferN-
odes shown in the diagram, and the data-flows themselves, the behaviour of
the system should remain standard whether data is being transported between
physically distinct hosts or whether all operations are occurring on the same
physical host. This is evident in the diagram since there are no explicit links
directly to the boxes representing the various platforms.

By using this conceptual view of the system, the opportunity for modular design
is evident. The diagram shows the basic infrastructure required for data flow
to take place on one host platform, or across host platforms. Data processing
forms part of this required infrastructure since data processing modifies the
data, and thus should interfere with a data flow. This infrastructure can exist
on any host, and satisfies the requirement that the system should be able to run
without a display. From Figure 4.1 this is demonstrated by the fact that viewer
objects are only indicated on hosts B and C. Host A is acting simply as a data
processor.

The potential for a modular design is hence also visible, since modules can be
created that interact with the buffer nodes, without having to obstruct the data
flow. The viewer object is an example of this, as well as the data persister that
was mentioned above. Other modules could also be defined as new requirements
become apparent.
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4.3 Key Conceptual Components

From the above discussion, it is now possible to clearly define some concep-
tual components of the system. These components are described below. Also
included in the description of each concept is a reference to the actual imple-
mentation class in the implementation model, this is included simply for clarity
and can only be done in hindsight since the implementation model is developed
chronologically later than the conceptual model.

Host There should be the concept of a host which participates in the whole
distributed system. It is necessary to abstract the implementation details
of how the system is distributed, however it is not necessary to abstract
the fact that the system is distributed. For this reason there should be
the concept of a host. The implementing class for this concept is the Bus
class, and it is discussed in section 6.3.

Node The concept of a Node is indicated by the bufferNode objects illustrated
in Figure 4.1. A Node is a point in the flow of data where the flow can fork
into any number of flows. A Node is also a point where data is buffered
after being processed. A Node offers a connection point at which access is
granted to the data that the Node buffers. This access does not interfere
with the data flow, it could be said that this access is read-only. The
implementing class for the Node concept is the LocalNode class, and it is
discussed in section 6.3.1.

Processor The processing that is applied to the data flowing from point to
point should be encapsulated in the concept of a processor. The actual
type of processing that is done is irrelevant at this stage, as long as it is the
processor that does the processing. The processor is an object that directly
alters the data that is flowing from point to point. The implementing class
is the Processor class and it is discussed in section 6.3.1.

Module Any component that adds functionality to the system for a particular
user should be viewed as a module. The Host, Node and Processor objects
are essential for ensuring that data can be communicated from point to
point, however these concepts only offer a realisation of a couple of use
cases. It is distinct modules that offer realisations of most of the use cases.
For example, viewing data should be a function that is implemented by
a particular module. Another module would offer a radar operator the
ability to capture data from the radar hardware. Each module has a
distinct function that a particular user will find useful. Not all modules
need to be available at every host, only the modules that a particular user
requires. The module concept is used to indicate that there may be many
different types of modules that accomplish various things, but all these
can be abstracted into the concept of a module. The Module interface is
the software interface that defines the base behaviour that any module
must exhibit. This is discussed in section 6.6.

It is with this conceptual design that the class diagrams from the specification
and implementation perspectives can be developed.
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4.4 Conclusion

The conceptual model for the proposed system was developed in this chapter.
The problem domain was discussed, introducing the concepts around which the
actual design was developed. Firstly, the concept of data flow was discussed. It
was found that, although data flow as a concept is important for visualising the
behaviour of the proposed system, the data flow concept is something that exists
only due to the interaction of a set of key concepts. This key set of concepts
was described fully in section 4.3.

The next chapter considers the specification analysis of the actual design. The
specification analysis concentrates on describing clear interfaces to all the com-
ponents making up the system. There will therefore not be a direct mapping
from the concepts described in this chapter to the interfaces described in the
next. It shall be seen that there might be many interfaces to a component
representing a single concept from this chapter. The concept of a Node is an
example of the case where the concept is realised by a single implementation
class, however it implements more than one interface.



Chapter 5

Specification Analysis

5.1 Introduction

This section describes the specification model for the system. Fowler [1] states
that the specification perspective differs from the conceptual perspective in that
the specification perspective relates directly to software entities such as classes
specified in software. However, the specification perspective focuses on inter-
faces, not implementation. This is important since one of the keys to object
oriented development is the difference between interface and implementation.
It is through the definition of clean interfaces that it becomes possible to ab-
stract details such as how the system communicates over the network.

This chapter is brief since it merely describes the interface specifications that
were defined for the system. Once again, the reader should be aware that the
process of defining the interfaces is iterative. This chapter only indicates the
final solution to the iterative process of interface definition.

5.2 Interface Definition

Figure 5.1 defines the specification model that was derived for the system. The
UML class diagram is used to illustrate how the various interfaces are related
to each other. This model describes the basic infrastructure around which the
system has been designed. This infrastructure by itself only really satisfies
the requirement that data should be distributed, however this infrastructure
provides the potential for more specific functionality to be added later.

A Dbase interface has been defined, and every other interface in the diagram
inherits from this interface. The base interface is the Located interface drawn
at the top of the diagram. The Located interface provides methods that allow
a client of a Located object to request its location within the network. The
method by which an object is located is dealt with when the implementation
model is developed.

31
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Figure 5.1: Specification Model

The fundamental relationship in the infrastructure described by Figure 5.1 is
the relationship between the DataSource interface and the DataSink interface.
These two interfaces provide the structure by which data is transferred. The
diagram indicates the multiplicity of the relationship between a DataSource and
a DataSink object. A DataSink object can have only one DataSource object,
while a DataSource object can have any number of DataSink objects. It is this
definition that allows the data-flows described in the conceptual model to be
forked into parallel flows. As soon as a DataSource object has more than one
DataSink object, then a fork in the data-flow occurs. This DataSink/Data-
Source relationship holds even when the DataSource and the DataSink are on
physically separate hosts. This is achieved in the classes that actually implement
the interfaces and is discussed in the implementation model.

The DataSource and DataSink interfaces only specify how data is transferred.
Further functionality is provided through the Node and NodeDescriptor inter-
faces. In the conceptual model, reference was made to a bufferNode object. The
bufferNode was described as a point in the system at which data is buffered and
made available for use to other components. The Node and NodeDescriptor
interfaces identified in the figure are different interfaces to the same conceptual
bufferNode. This is illustrated more clearly in the implementation model. In
fact, such a bufferNode object would also have to implement the DataSource
and DataSink interfaces in order to be able to form part of the conceptual data-
flow. The extra functionality that the Node interface provides would include a
means by which an external component or module might get access to the data
buffer in order to display or persist the data. The reason that both a Node inter-
face and a NodeDescriptor interface were defined becomes apparent later, but
it should be noted that the NodeDescriptor interface is a generalisation of the
Node interface, and as such, the Node interface offers extra functionality over
that offered by the NodeDescriptor interface. Basically, a NodeDescriptor
interface provides methods for exploring the underlying object, while the Node
interface provides methods that offer a tighter coupling between the objects
involved. These issues are covered in more detail in the implementation model.

In the same way that the Node and NodeDescriptor interfaces are different in-
terfaces to the same conceptual object, the BusDescriptor and BusConnection
interfaces are also interfaces to the same conceptual object. In the conceptual
model, four different hosts were mentioned and depicted in the diagram as three
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dimensional cubes. Rather than abstracting the actual hardware, it is more use-
ful to introduce the concept of a bus and define it as the environment in which
the implementation of the specified interfaces can exist. A bus therefore glues
all the components together. While typically there would be one bus existing
on a particular host computer in which many bufferNodes might exist, there is
no reason why more buses could not be started up on the same host. The bus
provides the environment in which data transfer between DataSource objects
and DataSink objects can occur. The term bus is used since this object can
be viewed as the software equivalent of a hardware bus; it offers connectivity
between many different components. The BusDescriptor interface provides a
means of querying the bus object, while the BusConnection interface provides
a more tightly coupled means of configuring the bus along with the components
that are connected to that bus.

Lastly, Figure 5.1 shows a Module interface. The Module interface is a generic
interface for any module that might connect with a bus. Such an object does
not form part of the conceptual data-flow, but simply exists on the bus to pro-
vide some added functionality. The diagram indicates a relationship between
the Module and the Node interfaces. The multiplicity shown on the diagram
indicates that this relationship is optional for the Module. This is more easily
described by means of an example. One obvious module that will be imple-
mented is a viewer module. A viewer module is a module that provides a user
with a graphical representation of the data. Such a module would have to con-
nect to a bufferNode object via the Node interface in order to get access to
the buffered data so that an image could be created from this data. However,
another module that might be developed is a chat module that allows users
to send messages to each other. Such a module would not require any access
to a bufferNode object, however it would still have to exist on a bus object.
This is why the multiplicity indicated on the diagram shows that a Module can
optionally interact with one Node.

5.3 Conclusion

This chapter described the specification model that was developed for the sys-
tem. A set of interfaces were described in UML to indicate the interfaces that
the system should implement. The interfaces that were defined mainly described
how the conceptual data flow should occur. The core interfaces responsible for
achieving this data flow are the DataSource and DataSink interfaces.

The Node and NodeDescriptor interfaces were defined as interfaces to the same
conceptual object - the Node concept that was described in section 4.3.

The Module interface was defined as a generic interface for modules that imple-
ment specific functionality, such as persisting data. More specialised interfaces
for these modules are created when required, but all specialised interfaces ex-
tend the base Module interface. This allows the rest of the system to treat all
module implementations identically.

The next chapter is devoted to the implementation of the interfaces defined in
this chapter. The details of network communication are explained, as well as
the details of how the data processing is achieved.



Chapter 6

Implementation Model

6.1 Introduction

The implementation model relates directly to the software classes that are de-
fined during the implementation of the system. Since this model deals with
the implementation of the interfaces described in the specification model, it is
a more detailed and comprehensive look at the system. The implementation
model will be discussed in portions since there would be too much detail to
include in a single class diagram.

Since the implementation model deals specifically with software classes, it is
necessary to specify the software tools that will be used to implement the system.
Section 6.2 summarises the tools that were employed in the implementation.

The core infrastructure is described in section 6.3. The core infrastructure is
made up of classes responsible for data transfer, as well as classes implementing
the framework in which data processing can occur.

Section 6.4 explains how the actual network communications is achieved using
CORBA. This section describes the class structure that makes it possible for
other messaging protocols such as RMI to be implemented at a later date.

The data structure is described in section 6.5. This section describes the wrapper
classes used to hold the data, as well as the CORBA structures that are required
for these wrapper classes to be transferred across the network.

The data-viewer, data-persister and radar-controller module implementations
are discussed in section 6.6. This section describes how these modules are in-
corporated into the system, and how other modules may be added at a later
date as requirements develop.

Finally, section 6.7 discusses the two scripting languages, JPython and XML,
that are used in the framework.

34
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6.2 Software Tools

The technologies that were used in this design have all been introduced in chap-
ter 2; this section simply clarifies for which parts of the system each tool is
used.

Java was selected as the programming environment in which the interfaces pre-
sented in chapter 5 would be implemented. Implementation classes would be
written in Java to perform all the functionality of data processing, data viewing
and data persistence.

CORBA was selected as the middleware for the system. In particular, the
Orbacus ORB was selected to provide the connectivity between software entities.
It should be noted though that while the solution incorporates a CORBA ORB
to provide the connectivity, this connectivity could also be provided by another
technology such as Java Remote Method Invocation (RMI). These details are
explained more fully in the section that covers distributed communications.

XML was selected as the scripting language to be used for configuration scripts
and data persistence. XML compliments Java and CORBA in that XML is
both platform independent and programming language independent.

Finally, JPython was used to provide a more powerful scripting environment.
For example, JPython was used to script together a set of GUI components to
create a customised GUI.

6.3 Core Infrastructure

The core infrastructure provides the environment in which the data-flow de-
scribed in the conceptual model can occur. The core infrastructure is therefore
the structure in which data transfer and data processing takes place. The inter-
faces used in this structure have been defined in the specification model. This
section now discusses the classes that implement those interfaces to create the
required infrastructure.

There are two classes that form the core infrastructure. These classes are the
Bus class and the LocalNode class. These classes are defined as follows:

LocalNode The LocalNode class is an implementation of the conceptual bufferN-
ode discussed in the conceptual model. A LocalNode instance therefore
provides a point at which data is buffered in the data-flow. In order to fit
into the data-flow, the LocalNode must implement the DataSource and
DataSink interfaces. The LocalNode class also provides an implementa-
tion of the Node interface, and consequently also of the NodeDescriptor
interface. By implementing these interfaces, a LocalNode object allows
other modules to the access the data buffer that is managed by the Local-
Node object. The Node interface also provides further functionality, but
this is covered in more detail later. A LocalNode instance can only exist
on a Bus instance. The LocalNode class is also responsible for data pro-
cessing. A processor object is managed by the LocalNode instance, and as
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Figure 6.1: Core Infrastructure Class Diagram

data arrives at the LocalNode instance, it is first processed before being
placed into the buffer owned by the LocalNode instance.

Bus The Bus class roughly encapsulates the environment on a particular host
computer in which a conceptual data-flow can occur. A Bus object would
contain a number of LocalNode instances, as well as any modules that
were being used. Typically one Bus object would exist on a particular
computer, however it is possible for more than one Bus instance to exist
on the same computer, as long as each Bus instance has a distinct name as-
sociated with it. The Bus class implements the BusConnection interface,
and consequently also implements the BusDescriptor interface.

These two classes provide the basic behaviour for the entire system. In order to
achieve any of the user goals mentioned in chapter 3, there would have to be at
least one LocalNode instance existing in a Bus instance on the user’s machine.
These classes together offer complete implementations of the data transfer and
data processing behaviour required, however they have been defined to interact
through the purely abstract interfaces defined in the specification model in order
to decouple the two classes from each other, and to decouple instantiations from
each other.

Figure 6.1 shows the class hierarchy for the classes discussed above. The Module
interface is also shown at this level, however it is discussed in a section on its
own. The diagram indicates the multiplicity between the Bus and the Local-
Node classes, as well as between the Bus class and the Module interface.

6.3.1 The LocalNode Class

The LocalNode class is discussed here since the requirements and consequent
implementation of the LocalNode class affect the design of the related infras-
tructure in which LocalNode instances exist and behave.
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The LocalNode class is an implementation of the conceptual buffer node that
was discussed in the conceptual model. The LocalNode class therefore has the
following responsibilities:

1. Maintain a data buffer containing all the data profiles making up a data
set.

2. Process data coming in through the DataSink interface according to a
configurable set of routines.

3. Ensure that the newly processed data is available to DataSink instances
through the DataSource interface.

4. Provide the Node interface through which components can access the data
buffer.

The need for a buffer node object was identified from an early point in the
design process, since it was required that data should be processed in stages
in order that various views of the data could be obtained to satisfy different
user processing requirements. The LocalNode class was defined to provide the
implementation of the buffer node.

The conceptual model shown in Figure 4.1 illustrates a processor object as being
a separate object in the flow of data. A Processor class was therefore defined
that would perform the task of data processing. While conceptually the pro-
cessor object can be considered completely separate, from the implementation
perspective it is necessary to bind the processor object more closely with the
buffer node. The main reason for this relates back to the fact that processing
data can be time consuming. The issues surrounding the timing of data pro-
cessing shall be dealt with in a separate section, for the time being it is enough
to note that a Processor class was defined that would be responsible for data
processing, and that an instance of this class is associated with every LocalNode
instance.

The core infrastructure needs to provide the mechanism by which data can be
propagated as rapidly as possible without any loss of data. Thus, if data is
being generated at five data profiles per second, then the infrastructure must
be able to accept the data at this rate, and attempt to propagate it at this rate.
However, since data processing can be a time consuming task, it may be that
data is being generated faster than the data can be processed. This is one of
the main reasons that a LocalNode instance must buffer data. Data can then
be buffered before it is processed, so that the data capture process can occur
at the rate required by the radar operator, and the processing can occur at a
different rate. The buffer maintained by the LocalNode instance acts as a dam
in the data-flow. This already implies that the data propagation is likely to be
asynchronous, since forcing the data flow to be synchronous would require data
to be generated by the radar server at a rate that was compatible with the most
time consuming processing occurring in the system.

The implementation perspective therefore differs from the conceptual perspec-
tive in that from the implementation perspective, data flows from one Local-
Node instance directly to another LocalNode instance. The Processor instance
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that handles the data processing still acts directly on the data flow, however the
Processor instance is encapsulated by the LocalNode instance. The LocalNode
instance first uses its Processor instance to process the data before it places the
processed data into its buffer. Data is therefore exchanged between LocalNode
instances, through the DataSource/DataSink interfaces. The LocalNode class
keeps a list of references to any number of DataSink objects. Data is piped
to all these references, and it is through this structure that a data flow can be
forked.

The behaviour of the DataSource/DataSink relationship is fundamental to the
design of the system. This behaviour must describe how data is actually trans-
ferred between nodes in the data-flow. There were two possibilities for this
behaviour; either a push paradigm could be employed where data is pushed
onto the DataSink by the DataSource, or else a pull paradigm could be em-
ployed where data is pulled from the DataSource by the DataSink. It is natural
to think in terms of the push paradigm for this system since data is generated by
the radar server at a rate required by the radar operator. However, it should be
remembered that the data flow must be asynchronous in order to allow for the
time required by the various Processor instances, and hence the pull paradigm
was employed. The reasoning is described in the following scenario:

Consider two LocalNode instances, X and Z. X is the DataSource, and Z is the
DataSink. Data must therefore flow from X to Z. Both instances own separate
Processor objects, however it is only Z’s Processor object that will affect the
data flow between these two instances, since Z’s Processor object will process
the data that arrives from X. Since a LocalNode object should only have one
data buffer, Z can only receive data at the rate at which it can process data.
This rate should not propagate back up the data flow, so X should be able to
receive data at a faster rate than Z can handle. It therefore makes sense that
instead of X trying to force data onto Z at X’s data rate, Z should fetch data
from X when Z is able to. If Z catches up with X, then Z will simply wait until
X receives more data. This also simplifies the case where there are multiple
DataSink objects connected to X. Instead of X trying to keep track of the data
rate required by each DataSink object attached to it, each DataSink object
can keep track of its own data rate, fetching data when required from X. This
also allows a DataSink object to connect to X after a measurement session has
already started, and the new DataSink object will be able to catch up to the
current profile. This is possible since all LocalNode objects have a data buffer.
It should also be evident at this point that a multithreaded environment will be
required. A LocalNode object will require its own thread in which fetching and
processing data can be handled.

This behaviour is achieved by the definition of the DataSource and DataSink
interfaces indicated in Figure 6.2.

Only the important methods are shown in the diagram. The DataSet, Data-
Header and DataProfile classes alluded to above are described by their names,
no more detail is required about them at this point. A typical measurement
session would proceed as follows:

1. A radar operator begins a measurement session; he will describe properties
such as azimuth step size which will be incorporated into the DataHeader
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Figure 6.2: LocalNode Class Diagram

object. This results in the startMeasurement method call propagating
through the data flow. This is essentially an asynchronous message, since
at each LocalNode instance in the data flow, a new thread is started
allowing the startSession call to return.

2. Each DataSink object responds to the startMeasurement message by call-
ing fetchDataProfile method on its DataSource reference. This fetch-
DataProfile method will block until data is available.

3. As soon as the fetchDataProfile method returns, the DataSink object
calls the fetchDataProfile method again. This process loops until the
end of the session, when a DataProfile object is returned that has a flag
set indicating that the session has ended.

A UML sequence diagram is shown in Figure 6.3 illustrating how the Data-
Source and DataSink interfaces described above behave.

Figure 6.3 illustrates the implementation of the concept of the data flow men-
tioned in the conceptual analysis. It is difficult to illustrate the multithreaded
behaviour of LocalNode instances on the sequence diagram, however an attempt
has been made by using multiple life lines where necessary.

The diagram shows a DataSource instance to which a LocalNode instance has
connected. There are multiple DataSink instances connected to the LocalNode
instance. In the diagram, time flows from the top to the bottom indicating the
sequence in which method calls are made.

When no measurement session is in progress, then the entire system is idle with
no active threads. As soon as a measurement session is started, the DataSource
instance calls the asynchronous startSession(...) method. This method
indicates to all DataSink objects that a session has started, and that each
DataSink object should begin requesting data. As can be seen in the diagram,
the startSession(...) method is propagated by the LocalNode instance to
all connected DataSink objects.

As soon as a DataSink instance (including the LocalNode instance) receives
the startSession(...) call, it must start up a new thread in which the
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Figure 6.3: Sequence diagram showing DataSource and DataSink interaction.

fetchDataProfile(int profile) method can be called on the appropriate
DataSource instance. The integer argument in the fetchDataProfile(int
profile) is used to tell the DataSource object exactly which DataProfile is
needed. In this way, it is up to each DataSink instance to keep track of which
profile is required, which allows each DataSink instance to be in the process of
retrieving a different profile from the same DataSource.

When the fetchDataProfile(...) method is called and the required profile is
not available at the DataSource yet, then the fetchDataProfile(...) method
will block until the profile is ready. This blocking is achieved by putting the
calling thread to sleep. When the profile arrives, the thread is notified, and
execution continues. This is indicated on the diagram by showing only the
dotted lifeline when the thread is being blocked. When the thread is notified,
the activation symbol (the narrow rectangle) is shown to indicate that the thread
is active. As can be seen, this occurs once the DataSource instance has returned
a profile to the LocalNode instance.

The diagram also shows how a DataSink object is created and connected to the
LocalNode instance in the middle of the measurement session. The DataSink
object connects to the LocalNode instance via the addDataSink(...) method.
Since a measurement session has begun, the LocalNode instance immediately
calls the asynchronous startSession(...) method on the new DataSink ob-
ject. The new DataSink object then starts up a new thread and calls fetch-
DataProfile(0) on the LocalNode instance. Since the LocalNode instance
already has profiles 0 and 1, these profiles can be returned immediately to the
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new DataSink object. The new DataSink object has now caught up to the rest
of the DataSink objects connected to the LocalNode instance.

When the measurement session is completed, a data profile is returned from
the radar server indicating that the measurement session is finished. This
profile does not contain any data, and acts as a data footer, however for ef-
ficiency reasons this footer was packaged as a DataProfile. When a DataSink
instance receives this footer it closes the extra thread, waiting for the next
startSession(...) method call.

Note that the focus of Figure 6.3 is on the implementation of the LocalNode
class. The other objects in the diagram might or might not be instances of
the LocalNode class, however, whatever they are at the implementation level,
they offer the required DataSource or DataSink interface. So for example, the
DataSource instance shown in the figure might actually be the radar server,
or a connection to the radar server but it is offering data via the DataSource
interface.

Finally, Figure 6.2 shows that the DataSource interface also specifies the fetch-
DataSet (). This method allows an entire data set to be transferred in one
step. This is useful if the entire data set is available since it is more efficient to
transfer it as a whole instead of profile by profile. There are two cases where the
entire data set might be available. The data may have been retrieved from some
storage facility such as a file. In this case the system might have been configured
to operate as a stand-alone application used for post-processing. The second
case where the entire data set is available might occur when a DataSink object
is connected to a DataSource object after a measurement session has been
completed. The entire data set is then available at the DataSource, and the
DataSource instance can then inform the DataSink object to use the method
call fetchDataSet() instead of the fetchDataProfile(...) method. The
mechanism is still the same however - that is, the fetchDataSet () method is
still called from a new thread spawned by the DataSink instance.

6.3.2 The Bus Class

The Bus class is not complicated since it is mainly a holder class for other classes.
Figure 6.1 shows enough detail for this section. The main responsibilities for
the Bus class can be summarised as follows:

1. Maintain a list of LocalNode instances.
2. Maintain a list of Module instances.
3. Provide a management interface through which the LocalNode and Module

instances can be configured.

As can be seen from Figure 6.1, the Bus class implements the BusDescriptor
and BusConnectioninterfaces. The BusDescriptor provides an interface through
which a Bus instance can be queried. This allows users to find out about a Bus
object that has been made available on the computer/network. For example,
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this interface specifies a method that lists the names of all the LocalNode in-
stances managed by the Bus instance.

The BusConnection interface extends the BusDescriptor interface to add man-
agement functionality. There are reasons for splitting the functionality of the
Bus class between two interfaces. There is the issue of restricting the function-
ality for particular users. A general user should be able to get information from
the Bus instance regarding what LocalNode objects are available, however that
same user should not necessarily be allowed to alter the configuration of the
LocalNode objects. The other reasons relate to the implementation of the net-
work adapters that do the work of distributing the Bus instance on the network
and will become apparent later.

6.3.3 The Processor Class

The Processor class was mentioned while discussing the LocalNode class. The
behaviour of the Processor class in conjunction with LocalNode class will be
discussed in this section.

The DataSource/DataSink interfaces define how data is transferred between
nodes in the conceptual data flow. It was pointed out that in the implementation
model, the processor object would be encapsulated by the LocalNode class.

While the Processor class does not participate in the data flow via the Data-
Source/DataSink interfaces, it does modify the data flow directly. The Local-
Node is responsible for ensuring that the data received is processed by a Processor
instance before being added to the LocalNode object’s data buffer.

The Processor class contains a list of routines that are applied consecutively
to the incoming data. Each routine is an object that performs some specific
signal processing. One routine may be an implementation of an inverse Fourier
transform, while another routine might perform a windowing operation. A
Processor instance would then chain these two routines together to obtain a
processor that applies first a window routine followed by an inverse Fourier
transform on each profile that arrives at the LocalNode instance.

The structure is actually an implementation of the Chain of Responsibility de-
sign pattern referenced in the book Design Patterns by Gamma et al [10]. The
class diagram for the Processor class is shown in Figure 6.4.

The diagram shows that the LocalNode class contains a reference to one Processor
instance. The Processor class is a concrete implementation class while the
Routine class is an abstract class. The RoutineLink is a pure interface. This
structure allows a Processor instance to contain a list of any number of Routine
objects, where each Routine object is an instance of a different concrete im-
plementation of the Routine class. Each Routine object in the list contains
a reference to the next RoutineLink instance in the list. The last Routine
instance in the list contains a reference back to the concrete Processor class
also through the RoutineLink interface implemented by the Processor class.
This allows the processor to receive the processed data back from the list of
Routine objects. The processor is then able to place the processed data into
the LocalNode object’s data buffer.
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Figure 6.4: Class diagram of the Processor class

Since it is the LocalNode class that is responsible for creating a thread in which
processing can take place, the Processor class must be completely synchronous.
This simplifies the implementation of the processing routines.

Also shown on the class diagram are the abstract classes Buf feredRoutine and
BufferlessRoutine. These classes are used to further simplify the implemen-
tation of various processing routines. The BufferlessRoutine class describes
a routine which only requires the current profile in order to process the output
profile. An example of such a routine would be the inverse Fourier transform
which is applied to each profile.

The BufferedRoutine class describes a routine where the output profile is de-
pendent on the processing of several input profiles. Any routine that uses some
kernel to process the output profile would fall into this category. Figure 6.4
uses a background subtraction routine as an example of a concrete implemen-
tation of the abstract BufferedRoutine. While the BufferedRoutine class is
abstract, it implements the buffering of a specified number of profiles. Concrete
implementations of this class then only need to implement the processing that is
performed on the kernel, and need not worry about implementing the buffering
as well.

The behaviour of the Processor class along with the two abstract Routine
classes is best illustrated in a UML sequence diagram. Figure 6.5 shows the
sequence diagram for the case where there are two routine objects. One routine
object is an implementation of the BufferlessRoutine class, while the other
routine object is an implementation of the BufferedRoutine object.

A sequence diagram gives an indication of the sequence in which messages
are exchanged between objects. The diagram shows a LocalNode instance re-
ceiving the asynchronous startSession(...) message. Included in this mes-
sage a DataHeader object containing information about the measurement such
as the azimuth step size. This data header must be processed by each rou-
tine object since each routine needs to add information to the data header.
The LocalNode instance therefore calls the synchronous applyDataHeader-
Processor(...) method on the Processor instance. The Processor instance
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then calls the pushDataHeader method on the first RoutinelLink instance in
the list. In this example, this next object is the BufferlessRoutine instance.
This BufferlessRoutine instance processes the data header, and then passes
the data header to the next RoutineLink instance in the list. The next instance
is the BufferedRoutine instance. The data header is processed once again, and
pushed onto the next RoutineLink instance in the list. The next RoutineLink
instance turns out to be the Processor object itself. The Processor object is
now able to place the data header into the LocalNode data buffer. This is done
by calling the pushDataHeader (. ..) method on the LocalNode instance. Only
after this method returns, can the applyDataHeaderProcessor(...) method
complete and return control to the LocalNode instance.

On completion of the applyDataHeaderProcessor(...) method, the Local-
Node instance is able to request the first data profile. This data profile is re-
turned by the fetchDataProfile (0) method. Once the data profile is returned
from the source, the LocalNode instance is able to process it by calling the
applyDataProfileProcessor(...) method on the Processor instance. Note
that after calling this method, the LocalNode instance relinquishes responsibil-
ity for that data profile. The Processor instance is now responsible for ensuring
that the profile ends up in the data buffer of the LocalNode object. This de-
sign is necessary since the LocalNode instance cannot keep track of the types of
processing routines that might exist in the routine list. The diagram illustrates
this point by showing a BufferedRoutine instance. This routine can only pro-
cess a new data profile once the required number of profiles have been received.
In the diagram, the first profile is sent into the list of routines, however when
the profile is received by the BufferedRoutine object, it is stopped since the
routine does not have enough profiles to process the result. The method is still
synchronous however, and returns control to the LocalNode object without the
LocalNode object being aware that the profile is actually buffered in a routine
awaiting more data. The next profile that is fetched is then also sent into the
list of routines, and when this profile arrives at the BufferedRoutine instance,
the routine checks and finds that it has enough profiles with which to process
the new profile. The routine processes the new profile and passes it on to the
next RoutinelLink, which happens to be the Processor object, which can then
add the profile to the data buffer of the LocalNode object.

While the diagram illustrates the means by which data profiles are processed
individually, the same process is applied to the case where there is an entire data
set available to be processed. The transfer of an entire data set was discussed
near the end of section 6.3.1. A data set that has been transferred as a unit like
this should also be processed as a unit since it is more efficient. The Routine-
Link interface specifies the pushDataSet (DataSet set) method which would
be called if a data set was available. In this case, instead of each profile in the
data set being sent through the list of routines individually, the entire data set
would be passed between each link in the list.

6.3.4 Core Infrastructure Summary

The core infrastructure is made up primarily of the Bus and LocalNode classes.
The Bus and LocalNode classes enable data to be transferred between a web
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of connected LocalNode instances while the Processor class describes the se-
quence in which data is processed. This core infrastructure is what gives the
main functionality to the system.

6.4 Network Communications

One of the requirements for this system was that it should be distributed. It
should therefore seem that this section should come under the previous section
as part of the core infrastructure, however it is discussed in its own section due
to the nature of the requirements.

The requirements were that the system should be distributed, however there was
no requirement that a particular technology be used to achieve this distribution.
In fact, the requirement was that the system should not be entirely dependent
on a single technology. It was indicated earlier that CORBA would be used to
achieve the distribution of the system, however, the solution should not be tied
to the CORBA technology. It should be possible to replace the CORBA specific
functionality with another distributed technology such as RMI. For this reason,
this section has been separated from the core infrastructure.

The DataSource/DataSink interfaces described earlier specify the manner in
which data transfer will take place, but no implementation is specified. It is
therefore possible to define a set of classes that implement these interfaces, and
adapt the interfaces to another set of interfaces that can be used to achieve dis-
tributed communications. This design pattern is known as the Adapter pattern,
and it is well documented in the Design Patterns book [10].

Using this pattern, it is possible to define a class that performs communications
over the network via CORBA, but that implements the DataSource interface
so that the core infrastructure can communicate with this class without being
aware that it is in fact a CORBA implementation. Similarly, one could define
a class that uses RMI to communicate over the network, and these two classes
could both be used by the core infrastructure with no alteration required in
the core infrastructure. Figure 6.6 is a class diagram showing how CORBA
adapter classes can be defined to adapt the interfaces on both sides of a network
connection to hide the network details from the core infrastructure.

The diagram shows that the Adapter pattern is applied twice, once for the
DataSource interface and once for the DataSink interface. The LocalNode-
Adapter class adapts the DataSink interface to a CDataSink interface while the
CNodeAdapter adapts a DataSource interface to a CDataSource interface. The
CDataSource and CDataSink interfaces are interfaces that are specified in the
IDL definition. The actual Java source files are then generated automatically
from the IDL definition.

At first, this may appear to be a rather round about way of achieving the
network communications. In fact, it might appear that the above structure
seeks to achieve what CORBA already achieves since the two adapter classes in
the above diagram appear to function as CORBA stubs and skeletons function.
One option that was considered in the design of the system was to simply
implement the interfaces declared in the IDL file directly. From the diagram,
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Figure 6.6: Adapter Class Diagram

this would mean that the LocalNode class would simply implement the CData-
Source and CDataSink interfaces directly. This would eliminate the need for the
two adapter classes, and the LocalNode class could then communicate directly
with the stubs generated by the CORBA ORB. However, this would then limit
the implementation to CORBA. The LocalNode class would be tightly coupled
to the CORBA classes, with the following consequences:

1. Tt would be very difficult to add another distributed technology such as
RMI to the system.

2. The CORBA libraries would always be required when running the system,
even if the system were to run on a stand-alone computer with no network
capabilities.

There is also the issue that the CDataSink and CDataSource interface source
files are automatically generated from the IDL file through the use of a separate
compiler. If suddenly a different technology to CORBA were to be used, then
these interfaces would have to be rewritten from scratch.

By implementing the design as shown in Figure 6.6, one could simply replace
the two adapter classes with RMI adapter classes, and the core infrastructure
would not require any modification.

This section will next concentrate on how inter-node communication is achieved
using CORBA, and will then go on to describe how Bus instances communicate
over the network.

6.4.1 DataSource to DataSink Communications

This section describes the implementation of the adapters that perform the
network connection between a DataSource instance on one computer, and a
DataSink instance on another computer.

Two adapter classes were defined, the LocalNodeAdapter class and the CNode-
Adapter class. The LocalNodeAdapter class is used to take an existing Local-
Node instance, and make it available on the network as a data source. The
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Figure 6.7: Class Diagram of the CORBA node adapter classes

CNodeAdapter class is used to complete the network connection to the data
sink. A CNodeAdapter instance will connect to a remote LocalNodeAdapter
instance, while offering the standard DataSource interface locally.

The class diagram of this design is shown in Figure 6.7. The class diagram also
shows the package information overlayed. This is useful to illustrate how the
interfaces decouple implementing classes. The packages are described as follows:

gpr.local The package in which classes implementing the core infrastructure
resides.

gpr .CORBA The package in which CORBA specific classes such as CORBA
adapters reside.

gpr .CORBA.map All the classes that are generated by the IDL compiler are
stored in this package. This package includes both the interfaces that
generated from the IDL source, as well as the CORBA stub and skeleton
classes that are generated by the IDL compiler.
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Figure 6.8: Collaboration Diagram showing the collaboration of the CORBA
node adapter classes

The diagram shows how it would be possible to replace the gpr.CORBA package
with a gpr.RMI package without disrupting the gpr.local package.

A UML Collaboration diagram offers a means of visualising how the various
classes described in Figure 6.7 collaborate to achieve the DataSource/DataSink
communications. Figure 6.8 illustrates how a LocalNode instance on computer
A can offer data through its DataSource interface to a LocalNode instance on
computer B. The collaboration diagram also illustrates which interfaces are used
to archive the communications.

A further advantage to the above design is the fact that the CORBA adapter
classes are not constrained to implement the same pull paradigm that is de-
scribed for the higher level DataSource/DataSink interaction. The Local-
NodeAdapter and CNodeAdapter class actually implement a push paradigm for
their interaction. This is necessary to avoid having the processing thread in
the DataSink instance blocking across a network connection. Instead, the local
CNodeAdapter instance blocks the processing thread while the CNodeAdapter
instance waits for data to be pushed onto it from the remote LocalNodeAdapter
instance. The implementation at the network level is therefore completely in-
dependent of the higher level DataSource/DataSink implementation.

The LocalNodeAdapter and CNodeAdapter classes provide a CORBA imple-
mentation of the DataSource and DataSink interfaces. However the Local-
NodeAdapter and CNodeAdapter classes were actually written to be CORBA
proxies for the LocalNode. This means that the CNodeAdapter class must im-
plement the Node interface as well so that objects that interact with a Local-
Node instance through the Node interface can interact just as easily with the
CNodeAdapter. The LocalNodeAdapter class must provide the link between
the CNodeAdapter class and the LocalNode class. This double-sided adapter
pattern is used extensively throughout the design of the system.
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6.4.2 Inter Bus Communication

This section explains the implementation of the adapters used to distribute a
Bus instance on the network. A Bus instance is used to manage a list of Local-
Node objects on a particular host. The Bus instance also maintains the list of
modules that the user is currently using. The main responsibility of the Bus class
however is to provide a standard means by which objects (nodes and modules)
can find one another and connect to one another. A LocalNode instance on Bus
A will use BusA to find a DataSource instance on a separate host.

As was stated earlier, the system should not be dependent on a particular dis-
tributed messaging technology. The previous section has shown how the im-
plementation of the inter-node communication can be hidden behind generic
interfaces, however there has to be a class somewhere in the system that is re-
sponsible for creating the CORBA-specific adapter classes that adapt the generic
interfaces to the underlying communication medium. Such a class would obvi-
ously have to be tightly coupled to the implementing classes for the particular
communication medium. In order to decouple the Bus class from such a class,
one could define a general interface for that class. The Portal interface was
defined for this purpose.

A class that implements the Portal interface would be responsible for creating
the adapter classes for a specific communication medium. The methods of the
Portal interface return the higher level interfaces specified in the specification
model. In this way, a Portal implementation can be written for any network
messaging technology that might be used in the future. For this system, a
CORBAPortal class was written that implements the Portal interface, however
one could also write a RMIPortal class that would also implement the Portal
interface. A Bus instance could then keep a reference to instances of both
Portal implementations. When the Bus instance is asked to find a particular
node, the Bus instance would ask both Portal implementations for a reference
to the required node.

Figure 6.9 is a class diagram illustrating how the Bus, Portal and LocalNode
classes are related to one another. Package information is overlayed on the
diagram to indicate how classes in different packages co-operate. The following
are the important points that Figure 6.9 attempts to illustrate.

1. The Bus class can have a reference to zero or more Portal instances.
A Portal implementation class must exist for each network messaging
technology that is supported by the system.

2. The Bus class maintains a list of zero or more LocalNode instances. Each
LocalNode instance has a reference to one DataSource instance and any
number of DataSink instances. The diagram illustrates how these Data-
Sink and DataSource references might be to adapter classes in the gpr. CORBA
package, thereby achieving a link to a LocalNode instance that exists on
a separate host.

3. Apart from the tight coupling between the Bus class and the LocalNode
class, all other references occur through interfaces defined in the gpr pack-
age. The diagram shows that classes in the gpr.local package will com-
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Figure 6.9: System Class Diagram

municate with classes in the gpr.CORBA package via interfaces in the gpr
package.

6.5 Data Structure

This section describes in more detail the structure that has been defined for the
data that is transferred and processed within the core infrastructure, as well as
the manner in which data is transported between the CORBA adapters.

6.5.1 Core Data Structure

It was evident from the requirements analysis that a more complex structure
would be required for representing the GPR data than simple arrays of num-
bers. One data profile consists of many individual samples, and each sample is
a complex number, so at the lowest level it is necessary to store two floating
point numbers to represent one sample. But apart from the actual numerical
data, there was the requirement that the processing history should accompany
the numerical data as well, so that it would be possible to rebuild the processor
that was applied to a given set of data. The information required for the pro-
cessing history would vary depending on the type of processing routines that
were applied - different routines require quite different parameters, and these
parameters would need to be stored as well. There should also be the possibility
for including comments embedded in the data that describe certain sections of
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the measurement, for instance the radar operator might wish to comment on
surface anomalies that might affect the profile taken at a specific point. The
data structure must therefore provide for all this information.

It was decided that the smallest element of a set of data would be a data profile
consisting of a number of complex samples. This was decided since this is the
logical manner in which data is captured using the radar hardware. It is then
more efficient to transfer one profile as a unit rather than transferring many
individual complex samples. The class used to represent a profile is the Data-
Profile class. This class is a wrapper for the following information:

e The numeric data consisting of a number of complex samples.
e A comment associated with the measurement, this comment can be empty.

e The profile’s position within the entire set.

A number of DataProfile instances would make up a set of data, and the Data-
Set wrapper class was defined to encapsulate a set of DataProfile instances.

The DataHeader class was defined to encapsulate all the information required for
the processing information. This information was separated from the individual
profiles since the processing information is applicable to an entire set of data,
and it would be inefficient to repeat the processing information with each profile.
The DataSet class also encapsulates the DataHeader class. The DataSet class
is in fact used as the buffer for the LocalNode class. DataProfile instances
can be appended to the DataSet buffer, allowing the DataSet instance to grow
as more data arrives at the LocalNode instance. A DataHeader instance is the
first data element to be transmitted from DataSource to DataSink, and it is
transmitted through the exact chain of routines that the rest of the data set is
transmitted through. This is necessary since the DataHeader instance allows
each routine in the chain to append its own configuration to the DataHeader
instance.

These three data classes are used by all classes in the core infrastructure. The
following section describes how these data classes are transferred between the
CORBA adapters.

6.5.2 CORBA Data Structure

The data structure described above must be communicated through whatever
network communications protocol is used. There are various ways of doing
this. Firstly, using Java’s built-in ability to serialise objects, it would be pos-
sible to simply serialise each data profile into a stream of bytes. The Local-
NodeAdapter instance would perform this serialisation, and would then transfer
this byte stream via a suitable IDL interface to the CNodeAdapter instance.
The CNodeAdapter instance could then deserialise the byte stream back into
a DataProfile instance, and this DataProfile object could be passed to any
registered DataSink objects.

The difficulty with this scenario is that it limits the data transfer operation
to Java implementations since only a Java implementation would be able to
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reconstruct a DataProfile instance from the stream of bytes. This is also
applicable to instances of the DataHeader class, which would be transferred
through object serialisation as well. It was therefore decided to define a set of
structures within the IDL definition of the CORBA interfaces. These CORBA
structures would be parallels for the data classes described above. The Local-
NodeAdapter instance would then have to map a DataProfileinstance to a type
that is defined in the IDL interface definition. This would be transferred through
the IDL interface to the CNodeAdapter instance, which would then transfer the
IDL structure back to a DataProfile. This is perhaps not as elegant as the Java
object serialisation solution, however it has a great advantage in that programs
developed using different languages can connect directly into the flow of data.
Three IDL structures were defined, a CDataProfile, a CDataHeader and a
CDataSet. It might seem that these structures should simply be used instead
of the classes described in the above section, however it must be remembered
that these IDL structures are specific to CORBA, and should therefore be kept
independent from the core infrastructure.

6.6 Module Implementations

This section discusses in more detail the means by which a Module implemen-
tation connects with the Bus and Node classes. As was indicated in Figure 6.1,
a Bus instance can maintain any number of references to Module implementa-
tions. The Module interface by itself does not specify any functionality that
directly satisfies any of the use cases described in the requirements analysis. It
offers methods that the Bus class requires in order to host it, in particular, the
methods specified by the Located interface.

Any other methods that a particular Module implementation wishes to publish
must be specified in an interface that extends the Module interface. This can
be achieved in various ways, and the actual structure employed for each Module
implementation may differ from implementation to implementation. This is
more clearly illustrated by considering certain modules individually.

6.6.1 The Data Persister Module

The data persister module fulfills the requirement that data must be persisted
in some form. Such a module should for the most part operate automatically;
it should not be necessary for a user to explicitly tell the module that it should
persist data. In general, the module should persist data when a session has been
completed.

It is possible to define a generic data persister interface that extends the Module
interface and adds only one extra method. The method persistDataNow()
overrides the module’s automatic behaviour and explicitly persists the data. By
defining an interface, it is possible to have many different implementations that
use different technologies to achieve the data persistence. Furthermore, it is
possible to then provide a CORBA interface as well, and the module could be
controlled from over the network.
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A simple data persister module was written that would write the data in XML
format to a file on the local file system. From Figure 5.1 it should be noted that a
module can have a reference to zero or one node. A data persister module clearly
requires a reference to a node so that it can gain access to the data buffer. The
data persister module therefore implements the methods of the Module interface
that allow it to be connected to a Node reference. Note that this connection
is not the same as the connection between DataSource and DataSink objects.
A module is connected to a Node reference simply by maintaining a reference
to that Node instance. The Node instance will not physically transfer data to
the Module instance. Instead, the Module reference can get access to the Node
instance’s data buffer through the getDataReference () method specified in the
Node interface. The Node interface also provides a means by which a module
can register itself to receive notification of when new data arrives at the node.
This is simply a notification informing the module that there is new data in the
buffer. This saves the module from having to poll the data buffer.

The persister module is simple in that there is little direct interaction required
between the module and an end user. In the future however, it might be re-
quired that there is a GUI that allows an end user to configure the module in a
more intuitive way. This GUI should then be defined in a separate class. The
GUI could then access the module through either the Module interface, or else
through an extension of the Module interface. It is also then possible to write
the appropriate adapter classes for the module that make the module available
on the network. The GUI can then control the module from across the network.

6.6.2 The Data Viewer Module

A data viewer module is a module that provides a visual interpretation of the
data on a particular node. The data viewer module is more complicated than the
persister module since the viewer module must provide some form of GUIL. The
GUI should be a compact component that can be treated as other GUI controls
within a larger GUI. This larger GUI should be configurable from a script file.
Instead of defining one class that implements the Module interface directly,
it was decided to split the data viewer module. The GUI class itself would
simply take a DataSet reference and display the data in that DataSet object.
A separate class would provide the implementation of the Module interface,
and this class would then control the GUI class. The GUI class is realised by
the DataSetViewer class, while the Module implementation is provided by the
LocalViewerModule class. This structure allows the DataSetViewer class to
be dependent only on the DataSet class, making it more reusable in the future.
The LocalViewerModule class does the work of communicating with the Node
reference and controlling the DataSetViewer accordingly.

6.6.3 The Radar Controller Module

The radar controller module is a module that provides an interface specific to
the radar. This module does not define a GUI, it rather provides a connection
to which a GUI might connect. The connection would be achieved through the
controller interface that is defined for the radar.
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A radar controller module would be responsible for two main functions. Firstly it
must provide an interface to which a radar operator might connect - that is there
should be methods that accomplish functions such as telling the radar hardware
to take a scan. Secondly, a radar module must be responsible for importing data
from the radar hardware into the system. It is therefore likely that there might
be a different implementation of a radar module for each different kind of radar
supported. However, each of these implementations would implement a common
radar controller interface which would be derived from the Module interface.
For example, in order to support the existing radar hardware, a radar controller
module would be defined that controls the existing radar through the existing
CORBA interface, but that implements the DataSource interface, so that the
LocalNode instances could connect directly to the radar module. If even older
radars were being supported then a radar module would have to be implemented
that would perform the serial communications directly with the radar hardware.
Future versions of the radar hardware will support TCP/IP directly, and it may
even be possible that the radar hardware could implement a CORBA interface
compatible with the DataSource/DataSink paradigm. If this becomes possible,
then the radar controller module would no longer be required to import the
data from the radar hardware, however the radar controller module would still
be required to offer an interface for controlling the radar hardware.

Firstly, a basic interface was defined that could be applied to any type of radar.
The methods that make up the interface allow an operator to achieve the fol-
lowing;:

1. Start a new session, specifying an opening comment as well as the azimuth
step size that will be used for the session.

2. Explicitly take a single scan.

3. Indicate that the radar hardware should start scanning continuously - this
allows the hardware to control the rate at which data is acquired.

4. Take a fixed number of scans. A number of scans is specified, and the
radar hardware is allowed to set the rate at which the scans are obtained.

5. Stop the radar hardware from scanning continuously. This reverts control
of the acquisition rate back to the system.

6. Comment the current scan. It is possible to buffer each scan as it comes
from the radar hardware. Instead of transmitting the scan into the data
flow immediately, the module can buffer the scan until the next scan ar-
rives. This allows the operator to add a comment to a scan before it is
transmitted into the data flow.

These options should be possible regardless of how the radar controller module
communicates with the radar hardware. The RadarControllerModule interface
was defined to support these functions.

A more specific interface is required for the existing radar, since there are other
options that can controlled, for example switching on the odometer. Further-
more, since the current radar hardware is controlled via a server that implements
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a CORBA interface, it is necessary to connect to this server. The server pub-
lishes its location through writing a stringified reference to a file. The radar
controller module must be given this stringified reference in order to make a
connection to the radar server. These additional methods have been defined
in the MercuryBRadarControllerModule. This interface extends the Radar-
ControllerModule interface. The implementing class for the MercuryBRadar-
ControllerModule interface is the LocalMercuryBRCModule. Once again, it
is useful to split the implementation from the interface in this way, since it
is now possible to define adapters that allow the radar controller module to
be controlled from anywhere else using the same interface. For example, a
GUI will have to be designed for radar operators. This GUI would then only
need a MercuryBRadarControllerModule reference, however the implementa-
tion might be achieved by some CORBA adapters, allowing the GUI to be op-
erated from one host, while the radar controller module is located on a separate
machine.

6.7 Scripting Languages

The system relies on configuration scripts that are used to describe the structure
of the system. A configuration script would capture all information related to
number of nodes, processor parameters and which modules are present, and
how the interconnections between components are made. A format for these
configuration scripts was required. It was decided that XML should be used
for this format since it is a standardised data format. Furthermore, since it
is standardised there are parsers already written. A set of XML tags were
defined that are specific to the system. Appendix B includes an example of a
configuration file in which each tag that has been defined is shown in relation
to the rest of the tags.

The configuration script currently is used to specify the logical structure for the
system. A script will describe each node along with the processing that must
be performed, and it will specify the source to which the node must connect.
The script will also describe each module that must be instantiated. All of
this information is of a structural nature, describing how system core must be
constructed. However there also must be provision for creating a GUI for the
system from a configuration script. Currently, this is achieved through the use
of JPython. JPython is a language based on the Python language, however
JPython is written in Java, and can be used in conjunction with existing, com-
piled Java classes. JPython allows for rapid prototyping, and as a consequence
was used for scripting the GUI components together. Ultimately, a more elegant
solution would be to have the entire system, GUI included, described in XML,
however this requires that another XML derivative for the GUI components
be developed, and this is a more complicated task than developing the XML
derivative for the logical structure of the system.
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6.8 Conclusion

This chapter described the implementation model for the framework. The core
infrastructure describing how data is transferred was discussed. This core in-
frastructure does not detail the underlying messaging protocol to be used. A
structure of adapters was defined that would allow developers to include the use
of other messaging protocols such as RMI. The concept was illustrated with a
set of CORBA adapters.

The data structure was described in detail, as well as how this data structure is
mapped to CORBA structures for transmission across the network.

The implementation of a set of modules was described. The data viewer, data
persister and radar controller modules were discussed, as well as how new mod-
ules could be written and used. Finally, the roles of the two scripting languages,
JPython and XML, within the framework were discussed.



Chapter 7

Results

7.1 Introduction

This chapter discusses the results obtained from the development of the system.
Section 7.2 describes the results of the design itself relating to the functionality
provided by the system.

Section 7.3 then discusses the performance results that were measured for vari-
ous scenarios. The results that are listed in this section only offer a very basic
idea of the performances that can be expected under certain scenarios, however
they are necessary in order to show that the system is viable.

7.2 Design Results

The system described in the preceding chapters was implemented. The core in-
frastructure along with a complement of CORBA adapters was developed. This
core infrastructure, supported by the CORBA adapters, provides the following;:

e Data distribution between nodes on local and remote hosts.

e Data processing framework allowing routines to added without the re-
quirement that the system be recompiled. Two reference routines were
written (a windowing routine and inverse Fourier transform routine).

e Ability to be configured at startup through a XML configuration script
describing the number of nodes and the type of processing required at
each node.

e Ability to be configured while running through remote interfaces.

In addition to the core infrastructure that was developed, the following modules
were written:
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Data viewer A module that is used to display data in various forms. The
actual GUI component that the user interacts with was implemented sep-
arately to the viewer module so that the GUI component was not depen-
dent on the core infrastructure or the structure of the viewer module. This
GUI component is not a stand-alone component and must be included in
a larger GUL

Data persister A persister module was written that takes data from a node
and writes it as an XML file.

Radar controller module A radar controller module was written that would
connect to the existing Mercury B radar server. This module imports data
from the radar server into the system, while offering a remote software
interface to which a GUI or command line program could connect.

The XML configuration script that describes the structure of the system at run-
time is used to specify which modules should be loaded. When a new module
is written, the new class files for that module are included with the existing
class files for the system, and the configuration script is updated to include the
name of the new module class. The system will then attempt to instantiate
the new module when it is started up. This process is the same for writing
new processing routines. A routine is written and compiled, and the resulting
class files are then added to the existing system class files. The name of the
new routine is then used in the configuration script, and the system is able to
instantiate the new routine.

7.3 Performance Results

The most important numeric result is the rate at which data can be transmitted
through the system. However, such a result will vary widely from application to
application, and from environment to environment. This dependence is largely
due to the following factors:

Data processing The application in which the framework is used will deter-
mine the nature of the processing that must be set up. Since the time
requirements for the different types of processing routines vary from rou-
tine to routine, the processing configuration will affect the rate at which
data can be transmitted in an unpredictable fashion.

Host computing power The power of the computer hosting components of
the framework will affect the time taken for processing to occur, and con-
sequently the rate at which data can be transmitted.

Network traffic When framework components are distributed physically, the
system becomes dependent on the bandwidth of the network. Since the
radar server is accessed across the network, the network bandwidth can
limit the data transmission rate at the source.
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It was decided that a couple of scenarios would therefore be simulated in order
to get an idea of the performance of the system. Firstly, the mercury B radar
controller module was used to connect to a radar simulator. No processing was
applied at any node. This gives an idea of the fastest rate at which data can
be acquired from the radar server. Secondly, a typical scenario was considered
that would most commonly be used. Such a typical scenario would consist of
the radar controller module, a node at which windowing and inverse Fourier
transform processing could be applied, and to which a viewer module could be
connected.

The same radar simulator was used for both scenarios, and the same data profile
size was used. The size of the data profile was a set of 256 complex floating
point samples - resulting in an array of 512 floating point numbers. The tests
were completed using two computers interconnected via a 10 Mbit ethernet
connection.

7.3.1 Scenario 1

This scenario gives an idea of the fastest rate at which data can be fetched
from the radar server. A basic simulator was written in Java that would imple-
ment the mercuryB IDL interface. This simulator would simply return a fixed
array of data for each scan request. Since there is very little overhead within
the simulator, the speed at which each scan can be fetched from the server
will not be limited by the implementation of the simulator, but rather by the
implementation of the node.

The setup for the scenario consisted of the radar simulator, one node, and the
radar controller module. No GUI components were specified since only the com-
ponents that are essential for importing data into the system were instantiated.
A node is required since the radar controller module needs to connect to a node
in order to import data from the radar server into the node (the radar controller
module appears to the node as a DataSource).

Two cases were considered for the configuration of the node. Firstly, no pro-
cessing was described for the node. The node would simply fetch raw data from
the radar controller. Secondly, the standard windowing routine along with the
inverse Fourier transform were configured for the node. The XML configuration
file for these two tests is given in Appendix A.

The scenario described above was repeated for two different topologies. Firstly,
the radar simulator and the node were both located on a single machine, and
the two tests were executed. The following results were obtained:

| Node Location | Simulator Location | Processing | Profiles/second |
Local Local none 346
Local Local windowing and IFT 322

The scenario was repeated for the case where the simulator was located on one
machine, and the node was located on another. The radar controller module
then connects to the radar simulator across the network. The following results
were obtained:
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| Node Location | Simulator Location | Processing | Profiles/second |
Local Remote none 177
Local Remote windowing and IFT 171

A decrease in the rate of data transfer is noticed when the connection to the
radar simulator is made across the network.

7.3.2 Scenario 2

The second scenario that was considered was a more typical case where a user
might wish to see a visual account of the data acquisition process. The win-
dowing routine as well as the inverse Fourier transform routine were also added
to this scenario since a visual representation of the data is more useful after
this processing has been applied. The scenario hence consisted of the following
components:

e Radar simulator
e Radar controller module
e Two nodes

e Data viewer module

Two nodes are required, one to form the buffer for the raw data that the radar
controller module acquires from the radar simulator, and one to form the buffer
for the processed data. This second node would be the node to which the
data viewer module would connect. The XML configuration file for the above
scenario is included in Appendix [A].

Once again, two situations were considered. Firstly, all the components above
were located on a single machine. This would be an example of how the system
might be used in a stand-alone mode, where the radar server is running on
the same machine, and the radar hardware is connected directly to the same
machine. This situation is similar to many of the current radar setups, where
a laptop computer is used to connect to the radar hardware, and a display is
shown on the laptop’s screen.

The second situation that was considered was more representative of where
the system would be better employed. The radar simulator was located on
a separate machine simulating the goal of the radar hardware, that it should
be connected directly to the network. The rest of the components were then
located on a single machine. These components would form the typical set of
components that a user would require in order to acquire raw data from the
radar, process it, and view the results while writing the data to disk for future
reference.

The following table summarises the results that were recorded.

| Node Location | Simulator Location | Processing | Profiles/second |

Local Local windowing and IFT 10
Local Remote windowing and IFT 134
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In the above table, the Node Location column refers to the entire system con-
sisting of both nodes, controller module and data viewer. Only the location of
the radar simulator itself was altered.

7.3.3 Discussion

The results described here are merely introduced to provide some idea of the
currently available data rate. Obviously if more powerful computers were used,
the data rate measured for these scenarios would increase.

The most noticeable feature of the above results is the significant loss of per-
formance that occurs when the data viewer is used and the system and the
simulator execute on a single machine. The reason for this loss of performance
is primarily due to the overheads associated with the use of Java. Since both
the system itself as well as the radar simulator were written in Java, when they
execute in the same host and connect via a CORBA ORB that is also written in
Java, there is a lot of contention for the system resources. As the results show,
when the radar simulator is moved to a separate host, the data transfer rate is
significantly increased. Orfali and Harkey [12] explain this phenomenon when
similar results are described in their book. A similar improvement should also
be noted if the simulator were written in a native programming language such
as C and allowed to execute on the same host as the rest of the system.

One factor affecting the performance for these scenarios is the interface ex-
ported by the mercury B version of the radar. This is the interface that was
implemented by the radar simulator used in the above scenarios. The mercury
B interface is based on a pull paradigm. The radar controller calls a method
on the radar server that returns a single profile. This method blocks until the
radar server is able to return data. Since the radar hardware will normally be in
control of when a scan occurs, a better paradigm would be the push paradigm,
where the radar server actually calls a method on the radar controller when data
is ready. This is better since the data rate can then be set by the radar server.
This is one improvement that will be made in newer versions of the radar.

Currently, the radar hardware is able to produce data at a rate of 10 scans per
second. This means that the radar controller must be able to acquire data from
the radar server at a rate of at least 10 scans per second. With the mercury
B design, this is very important since, if the hardware is producing data at a
faster rate than the radar controller can manage, data profiles will be skipped.
In future, the radar server will also buffer data, and the consequence of not
matching the hardware data rate will not be as severe since the data will be
buffered, however the radar controller should still be able to acquire data at the
rate at which it is being produced. As is evident from the results, the slowest
rate that was measured was also 10 scans per second. This is a very close match
to the rate supported by the radar hardware, however it should be noted that
the true mercury B radar server is in fact written in C/C++, and hence if
the system were configured to execute on a single machine as the second test
scenario was, a higher data rate could be supported by the system.

Finally, some comments should be made about the repeatability of the above
tests. The data rates were obtained by measuring the time taken for the node
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to retrieve two thousand data profiles from the radar controller. This retrieval
process was repeated until the average data rate over the retrieval of two thou-
sand data profiles reached a constant. This typically involved running through
the set of two thousand data profiles about three times. Typically, the data rate
measured for the first set of two thousand data profiles is slightly slower than the
rate measured for the second and third sets. Thereafter the data rate reaches
a constant. There are two factors that contribute to this behaviour. Firstly,
the Java virtual machine incorporates a Hot-Spot technology that optimises the
execution of the Java byte code while executing the program. This means that
if there is a portion of code that is frequently executed, then this portion of
code will execute more efficiently as time progresses. Since the process of re-
trieving data from the radar controller is repetitive, this process becomes more
optimised the longer the program executes.

The second factor affecting this performance increase is the recycling of data
structures. When the first two thousand data profiles are retrieved, the system
needs to create two thousand new objects - a new DataProfile object for each
data profile that is obtained. However, when the next measurement session is
started, the two thousand DataProfile objects are not simply discarded, they
are recycled to hold the new data profiles that are retrieved. This saves on the
object creation time that would otherwise be incurred.

7.4 Conclusion

Two sets of results were discussed in this chapter. Firstly the results of the
system design were discussed. The functionality that the system achieved was
discussed as part of this set of results. It was found that the design requirements
for the framework were met. Secondly, the performance results were discussed.
Two scenarios for measuring the performance were considered. The fastest data
transmission that was recorded was made when the radar server was executed
on a separate machine to the node at which data was being processed. Since
this would be the typical deployment for the framework, the data transmission
rate was quite adequate - being more than ten times the required data rate of
ten data profiles per second.



Chapter 8

Conclusions And
Recommendations

8.1 Conclusion

A framework for distributed data capture and processing was developed for
ground penetrating radar. The framework provides a means for distributing
data obtained directly from a ground penetrating radar to users connected on a
network. The framework allows processors to be configured at various points in
the network. The framework allows modules to connect to points in the frame-
work. It is these modules that provide behaviour customised to a particular
requirement.

The following modules were developed:

e Data viewer module
e Data persister module

e Radar controller module

The framework by itself is not a stand alone application, it requires scripts that
define how it will operate. XML is used as the scripting language to achieve
this. These scripts are used to customise the behaviour of the framework to suit
particular users’ requirements.

Two scenarios were considered in which different system configurations were
constructed, and an attempt was made to measure the maximum data transfer
rate. The fastest rate obtained was 346 scans per second. This rate was obtained
when no processing was applied, and only one node was present. This was the
fastest rate at which data could be transferred from a radar simulator into
the system itself via a CORBA interface. This test was conducted on a single
machine. It was found that when processing consisting of a windowing routine
and an inverse Fourier transform was configured, and a data viewer module
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was configured, the data rate was faster when the simulator was relocated to a
remote host. The fastest rate achieved in this case was 134 scans per second.
These data rates are suitable for the existing mercury B radar hardware which
can produce data at a maximum rate of 10 scans per second.

8.2 Future Work

The focus for the framework was on the infrastructure for processing and com-
municating data from point to point. In order for the framework to be of use to
a wider range of users with different levels of computer experience, more work
will need to be applied on the GUI side of the development. The goal is that
the GUI will also rely on a configuration script that defines its appearance. An
experienced user will then write a script to configure the framework for a par-
ticular group of end users. Once this is done, the end users should not have to
edit or view the configuration script since the GUI will be customised to their
requirements. Presently, this is achieved through the use of JPython, however
ideally the same language should be used for all configuration scripts.

The framework was developed to support ground penetrating radar data. The
interfaces that were specified for the data transfer mechanism rely on a data
type that was defined specifically for GPR data. The reason for defining a
specific GPR data type was that it should be more efficient since no parsing
would be necessary. However, this is restrictive in that only data that can be
formatted as GPR data can be transferred in the framework. An alternative
would be to transfer data in XML format. The advantage to this would be that
completely new data formats could be described within the XML message, and
the framework would not have to be concerned about this. The disadvantage
would be the extra overhead required for parsing XML data and formatting
data as XML. These advantages and disadvantages should be compared, since
it is possible that the advantage in abstracting the data format may outweigh
the disadvantage of the overhead required for parsing. This might be especially
true for cases where the size of the data is small.



Appendix A

Configuration File Listings

The XML configuration files used for testing the system are included here.

Scenario 1

The following file was used to configure the system for the first scenario. The
processor section of the following listing was commented out for the case where
no processing was applied, but otherwise the listing was unchanged even though
the radar simulator location was altered.

<?xml version="1.0" encoding="us-ascii’?>
<bus name="Bus1A">
<portal name="CORBAPortal" class="gpr.CORBA.CORBAPortal" publishbus="true">
<parameter name="orbConfigFileName" value="orbconfig.cfg"/>
</portal>
<node name="radarnode">
<processor>
<routine class="gpr.local.WindowRoutine">
<parameter name="type" value="rectangle"/>
</routine>
<routine class="gpr.local.InverseFTRoutine">
<parameter name="points" value="256"/>
</routine>
</processor>
</node>
<module name="MercBController" class="gpr.modules.LocalMercuryBRCModule">
<sourcenode node="radarnode"/>
<parameter name="stringifiedreference.file" value
</module>
</bus>

="mercuryB.ref"/>
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Scenario 2

The following file was used for the configuration of the system for the second
scenario. Again, the same file could be used for both cases where the location
of the radar simulator was altered.

<?xml version="1.0" encoding="us-ascii’?>
<bus name="Bus2">
<portal name="CORBAPortal" class="gpr.CORBA.CORBAPortal" publishbus="true">
<parameter name="orbConfigFileName" value="orbconfig.cfg"/>
</portal>
<node name='"radarnode">
</node>

<node name="

processednode'>
<sourcenode node="radarnode" bus="Bus2"/>
<processor>
<routine class="gpr.local.WindowRoutine'">
<parameter name="type" value="hamming"/>
<parameter name="beta" value="8.2"/>
</routine>
<routine class="gpr.local.InverseFTRoutine">
<parameter name="points" value="256"/>
</routine>
</processor>
</node>
<module name="MercBController" class="gpr.modules.LocalMercuryBRCModule">
<sourcenode node="radarnode"/>
<parameter name="stringifiedreference.file" value="mercuryB.ref"/>
</module>

<module name="

viewer" class="gpr.modules.LocalViewerModule">

<sourcenode node="processednode" bus="Bus2"/>
</module>
</bus>
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XML Configuration File
Skeleton

The following listing shows a skeleton version of a configuration file.

<?xml version="1.0’ encoding="us-ascii’?>
<bus name="BusA">
<portal name="CORBAPortal" class="gpr.CORBA.CORBAPortal"
publishbus="true/false"/>
<parameter name="orbConfigFileName" value="orbconfig.cfg"/>
</portal>
<node name="NodeA">
<portal name="CORBAPortal"/>
<sourcenode node="NodeX" bus="BusX"/>
<processor>
<routine class="gpr.local.WindowRoutine">
<parameter name="type" value="hamming"/>
<parameter name="beta" value="8.2"/>
</routine>
<routine class="gpr.local.InverseFTRoutine">
<parameter name="points" value="256"/>
</routine>
</processor>
</node>
<module name="MercBController" class="gpr.modules.LocalMercuryBRCModule">
<sourcenode node="radarnode"/>

="stringifiedreference.file" value="

<parameter name mercuryB.ref"/>
</module>
<module name="viewer" class="gpr.modules.LocalViewerModule">
<sourcenode node="processednode" bus="Bus2"/>
</module>
<module name="persistor" class="gpr.modules.LocalFSDataPersistorModule">
<sourcenode node="NodeA"/>

<parameter name="directory" value="/home/allen/projects/measurements"/>
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</module>
</bus>

The following table lists the tags and their attributes:
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| Tag | Description | Attributes | Description | Rqrd?
bus Indicates the presence of | name Used as the identifier for | yes
a bus. the bus on the network
portal (1) This tag has a slightly | name Used as a simple identifier | yes
different meaning de- for the portal, so that it
pending on its context. can be referred to later by
In this context it must name.
appear as a direct leaf
of the bus tag. It then
specifies a portal that
the bus must instantiate.
class Specifies the absolute | yes
class name for the re-
quired portal.
publishbus | Specifies whether the bus | yes
should be made available
on the network or not.
It’s value can be true or
false
node Specifies the presence of | name The identifier for this node | yes
a node on its host bus
portal (2) In this context, the tag | name Indicates which of the de- | yes
appears within an en- clared portals must be
closing node tag. It used to publish this node.
is then used to specify
which portals the partic-
ular node must be pub-
lished through.
parameter A tag used to specify a | name The name of the parame- | yes
named parameter. The ter.
parameter is generally
required by the enclosing
tags.
value The value of the parame- | yes
ter.
sourcenode | Used to specify the | node The name of the source | yes
source to which the node. This name can refer
enclosing tagged object to a remote node, as long
should connect. This tag as the remote node’s bus is
is used for both nodes also specified by the next
and modules to indicate attribute.
which node should be
the source.
bus The bus on which the | no
source node occurs. If
this attribute is left out,
then the source node is as-
sumed to occur on the lo-
cal bus.
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| Tag | Description | Attributes | Description | Rqrd?
processor Specifies the processor.
This tag is used to
enclose any number of
routine tags.
routine Specifies a routine. The | class The fully qualified class | yes
order in which routines name of the implementing
are listed reflects the or- class.
der in which the rou-
tines are applied. The
parameter tag should be
used to list routine spe-
cific parameters.
module Specifies a module. name Specifies the name of the | yes
module so that it can be
identified and referred to.
class The fully qualified class | yes
name of the implementing
class.
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