Design Patterns for Parallel Programming

S. Siu, M. De Simone, D. Goswami, A. Singh
Dept. of Electrical & Computer Engineering
University of Waterloo,

Waterloo, Ontario, Canada N2L 3G1
email: asingh@etude.uwaterloo.ca
phone: (519)888-4567 X2805
fax: (519)746-3077

Abstract

This paper describes the concept of design patterns for the develop-
ment of parallel applications. Such design patterns are implemented as
reusable code skeletons for quick and reliable development of parallel ap-
plications. In the past, parallel programming systems have allowed fast
prototyping of parallel applications based on commonly occurring com-
munication and synchronization structures. The essential difference in
this system is the use of a standard definition and interface for a design
pattern. This has two important implications. First, design patterns
can be defined and added to the system’s library not only by the sys-
tem developers but also by the users(Eztensibility). Second, customiza-
tion of a parallel application is possible by mixing design patterns with
low level code resulting in a flexible and efficient parallel programming
tool (Openness).

1 Introduction

Building software tools that ease the development of parallel applications is one of the primary
concerns in the area of parallel computing. To reduce the complexity of software development,
sequential as well as parallel programming models commonly employ abstractions such as
macros, functions, abstract data types, and objects. In this paper, we introduce the concept
of a design pattern for parallel programming that can potentially reduce the time and effort
needed to develop a large variety of parallel applications. A parallel programming system,
called DPnDP (Design Patterns and Distributed Processes), that employs such design patterns
is described.

Design patterns describe a recurring problem and a reusable solution to that problem [5].
Design patterns in DPnDP provide a general mechanism to support high level synchronization
and communication structures. The concept of a design pattern for parallel programming is
based on the realization that a large number of parallel applications (especially medium- and
coarse-grained applications) are built using commonly occurring parallel techniques such as a

task-farm or a divide and conquer structure. Developing a program that employs such complex
parallel structures would require a significant amount of time and effort if a low-level tool is
used (for example, UNIX sockets [8] or a message-passing library such as PVM [6]). Further,
because sequential computation code is not separated from parallel communication code, the
parallelism would be explicit, thus increasing the complexity of the application code. Each time
the programmer wants to experiment with a different parallel structure for the application,
additional programming effort would be required. Moreover, such an effort would be replicated,
knowingly or unknowingly, by other programmers while writing other applications.

DPnDP is a design pattern driven parallel programming system that separates the spec-
ification of the parallel structuring aspects —such as synchronization, communication and
process-processor mapping— from the application code that is to be parallelized. A design
pattern in DPnDP is a software abstraction that implements a certain commonly occurring
parallel structure and behavior in the form of a reusable and application independent code
skeleton. The system provides a collection of design patterns that are stored in a library.
To use a design pattern, the user simply provides the necessary sequential code. The system
generates extra code to instantiate the design pattern.

An important feature of design patterns in DPnDP is that they are context insensitive.
This means that implementation or use of a design pattern makes no assumptions about
implementation of any other design patterns. Each design pattern provides a standard interface
that can be used with other design patterns to compose an application. By providing a
standard interface, new design patterns can be added to the system incrementally, making
the system extensible. Also, it allows a design pattern to be used in conjunction with low
level communication and synchronization primitives (such as message passing) thus facilitating
customization and tuning of an application.

2 The Model

Design patterns implement various types of common process structures and interactions found
in parallel systems, but with the key components — the application-specific procedures —
unspecified. A user provides the application-specific procedures and a high level description of
the parallel application. Design patterns abstract commonly occurring structures and commu-
nication characteristics of parallel applications, allowing users to develop parallel applications
in a rapid and easy manner. This approach potentially enhances the correctness of the par-
allel application by providing well tested communication code skeletons that otherwise would
have to be written from scratch by the user. Examples of currently supported design patterns
include task-farm, pipeline, fan-out structure, divide and conquer, and process replication.

In DPnDP, a parallel application is represented by a directed graph (Figure 1). Each
node of the graph may be associated with a sequential computation code module written in
a sequential language (C or C++ in our case). Each module also has one or more message
handlers, each having its own message context, which receive messages from other nodes and
invoke the sequential code inside the module to process these messages accordingly.

Alternatively, a node of the application graph may represent a design pattern. The in-
terface of a design pattern is indistinguishable from that of a module i.e., in each case other
nodes interact with it via message passing through a common interface. However, the internal
structure of the design pattern may be a multi-node subgraph. Some of these nodes may, in

—
—"
—"‘
—"—
—’—

Besi Design
esign Pattern
Pattern

Figure 1: Overall Structure of a DPnDP Application

turn, be design patterns. Nodes interact with one another by sending and receiving messages.

When using a design pattern, a user only deals with communication that is application
related. The generated code takes care of all other synchronization and communication needed
for proper management of the processes in a design pattern. For example, in a task farm, the
application code simply supplies work to the replicated processes and receives results. All the
necessary process creations and interprocess communication for the management of replicated
worker processes is handled by the code generated for the specified configuration of the task
farm.

2.1 Sample Applications
2.1.1 Example 1: Parallel Quick Sort with Regular Sampling

Because of quick sort’s divide and conquer nature, this algorithm fails to spread workload
evenly to a large number of processors quickly. Performance of parallel quick sort, therefore, is
usually limited by the time taken to perform this initial partitioning. Parallel Quick Sort with
Regular Sampling (PQSRS) is a parallel algorithm developed by researchers in University of
Alberta [9] to make quick sort efficient on distributed memory parallel computers by letting all
processors sort its own data without waiting for the initial partitioning and then collaborate
to generate the final solution. This parallel algorithm can be implemented by using a single
master/slave parallel design pattern (Figure 2).

The following steps are required to generate this parallel application using DPnDP:

1. Select a master/slave pattern from the graphical user interface.
2. Fill in the structural parameter - Number of Slaves.

3. Select “Generate” to generate the code skeleton. The code skeleton is generated in a
directory structure where each node has a separate directory containing all necessary
files (source files and a makefile). A connection file specifying how nodes are connected
is also included.

4. Edit the files to insert sequential entry procedures into the skeleton. In this case, one is
needed for the master node (Figure 4) and another for the slave node (Figure 5).

- ~
- ~o

' Master/Salve . /

Pattern Replication \
Design \
Pattern

-

Replicator

D A

~- ——

/ Slave “.
'.‘Replicated K

Prag

........

Figure 2: Structure of the PQSRS program

5. Issue the “make” command. All executables will be built and copied to the appropriate
directory for execution.

6. Execute the parallel program.

Some experimental data was collected for this sample program (Figure 3). These experi-
ments are run on a cluster of workstations connected by ethernet.

Number of Execution Speed-Up
5000 Processor Time (s) Ratio
4587.87 1 4587.87 1

n
§4ooo- 2 3348.75 1.4
= 3348.75 4 1854.76 2.5
§ 3000
'g 8 647.601 7.1
o
)
2% 2000 B 16 727.452 6.3

1000 647.60 727.45

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J

2 4 6 8 10 12 14 16
Number of Processors

Figure 3: Experimental results of PQSRS

2.1.2 Example 2: Graphics Animation

Here is another more complex example that uses more than one design pattern. Consider a
graphics animation program consisting of three modules Generate(), Geometry() and Display/()
where a sequence of graphical images, called frames, are to be generated. Depending on
the subject of animation, Generate() computes the location and motion of each object for
each frame. It then calls Geometry() to perform actions such as viewing transformations,

int NodeMain(NL_PortList& thePorts, int argc, char* argv[])
{

// Cache output port handle from Port Array

NL_Port& InPort = (#gPortList)["in0"];

FNL_Port& OutPort = (*gPortList)["out0"];

// Step 1: Divide Array into NoOfProcess subarrays

// Step 2: Distribute to slaves for sorting

for (i = 0; i < NoOfProcess; i+=1) {
OutPort.send(i); // Send Msg Tag
OutPort.send(Size); // Send Size of array
OutPort.send(Temp[i] .ArrayPtr, Size); // Send array of size Size

} // for

// Step 3: Collect Messages

for (i = 0; i < NoOfProcess; i+=1) {
int index, aSize;
InPort.receive(index); // Receive lsg Tag
InPort.receive(aSize); // Get Size of Msg
InPort.receive(Temp[index] .ArrayPtr, aSize); // Put Msg in array

} // for
A = Cat(Temp, NoOfProcess);

// Step 4: Sample/Sort Samples, Find/Use Pivots to rearrange list
// Step 5: Distribute to slaves for sorting (Same as Step 2)
// Step 6: Collect Messages (Same as Step 3)

} // NodeMain

Figure 4: Entry procedure for the Master node

int ASP_M_NodeMain::MsgHandler(const NL_Port& thePort)
{
// Cache output port handle from Port Array
NL_Port& OutPort = (*gPortList)["output0"];
int size, ID; int *buf;

// Get the message from received port
thePort.receive(ID);
thePort.receive(size);

buf = new int[size];
thePort.receive(buf, size);

QuickSort (buf, size);

// Send the message back to where it comes form
OutPort.send(ID);

OutPort.send(size);

OutPort.send(buf, size);

delete [] buf;
return GOOD;

} // MsgHandler

Figure 5: Entry procedure for the Slave node

projection and clipping. Finally, the frame is processed by Display() which performs hidden-
surface removal and anti-aliasing. Then it stores the frame on the disk. After this, Generate()
continues with the computation of the next frame and the whole process is repeated.

Pipeline Pipeline
Design Design
Pattern Pattern

: .
i | Generate |

.
.

Replication N
Design \

.-

3
'
H
H H
'
H
H H
'
H
H H
'
e
+ | Generate) « PO Eat N
' . ~
H / “
H H
N\,
' 7
H
H
'
H
H
'

:
:
:
:
:
:
:
:
:
:
:
:
TN
:
:
:
:
:
:
:
:
:
:
:
:

i . ,/ ,' Pattern ‘\
/Geometry 1+ ¢ ! \
' -‘Rephcated',' » i i
\~ "/ L H
sepenel \]
e ' \]
R ' \ /

e . H \ ’

‘ N AN /

'/ Display * ! \ J

H l“Rr:p]icated,' H RN /,’
SR A SR, reeo—oe””
L L L L
a) Original Pattern b) Refined Pattern

Figure 6: Structure of the Graphics Animation program

A simple way to parallelize this application would be to let the three modules work in a
pipelined manner on different processors. After computing a frame, Generate() passes it to
Geometry() for processing and starts working on the next frame. Similarly, Geometry() can
pass its output to Display() and then receive its next frame from Generate(). Therefore, all
three modules can work in parallel on different frames (Figure 6a). Now, if Display() takes
much longer to do its processing as compared to Generate() and Geometry() (which is generally
the case in reality; hidden-surface removal and anti-aliasing require much more time than the
other components of the program), more than one instance of Display() can be initiated. This
is possible because the processing of each frame is independent. Similarly, if we were to improve
the performance of Geometry(), several instances of it may be initiated as well. This situation
is shown in Figure 6b where Geometry() and Display() have several active instances.

Although this example uses only pipeline and replication design patterns, it illustrates
several points:

1. Other than the minor changes required to convert the local procedure calls in Generate
and Geometry, the sequential and the parallel version of the application code are the
same.

2. The two parallel versions of the application differ only in terms of the design patterns
they use. The application code is the same in each case.

3 Implementation

DPnDP has the following components: user interface, design pattern library, code skeleton
generator and other supporting libraries (Figure 7). User specifies the directed graph through

the user interface. The user interface uses functions in the design pattern library. The library
passes the directed graph with all the structural and behavioral information of design patterns
it contains to a code skeleton generator to generate a set of code skeletons that correspond to
the directed graph specified by the user.

C++/Active
Sle ‘)) Objc
.......] New ‘ é
% Patterns .

Multiple
Multiple Extensible Design - Source Code Code
User Interfaces ’ Pattern Library Generators Skeleton

Figure 7: System Architecture of DPnDP

The design pattern library contains parallel design patterns written as C++ classes. These
design patterns capture the structure, behavior and architectural information of a communi-
cation pattern. For example, an N-stage pipeline is a design pattern. A divide and conquer
structure with variable width and depth is another example. A pattern can be instantiated
into a communication skeleton when all necessary parameters are provided by the user. Pa-
rameters help capture generic behavior of design patterns (an N-stage pipeline) rather than
specific instances of them (a 2-stage or a 3-stage pipeline).

All design patterns in DPnDP have a uniform way of definition and implementation. Each
pattern inherits from a default design pattern class that provides standard behavior and com-
mon interface for all design patterns. The default pattern class contains some pure virtual
functions — functions with interface but not implementation — that individual pattern can
override to define its unique structure and behavior. This approach hides the code generation
mechanism from pattern designers who need not know how code skeletons are generated. It
also enforces a common interface so that all design patterns can be accessed the same way and
thus can be used interchangeably. Each pattern is context insensitive meaning that it does not
need to know the implementation of other patterns in order to work with them. Through this
common interface, users can also develop new design patterns and add them to the library.

Design patterns not only can be used individually but also can be composed and refined to
form more complex parallel structures. Composition lets users connect multiple design patterns
in a directed graph so that more complex parallel programs can be expressed as a collection
of interacting code modules and design patterns (Figure 1). Refinement lets users redefine the
components of an existing pattern while retaining the structural and communication behavior.
This allows users to reuse as much of the power of an existing pattern as possible to solve
problems that differ slightly from that design pattern (Figure 6). Composition and refinement
are not mutually exclusive.

Code Skeleton Generators translate the intermediate representation produced by the design

pattern library into a set of source code skeletons completed with makefiles that are nicely
packaged into directories. Separating code generation from the design pattern library allows
DPnDP generate code skeleton for multiple programming languages, message passing libraries
and operating systems without modifying the design patterns in the library. Code Skeleton
Generators are written in perl [15], a powerful and cross platform text and file processing
language.

Multiple user interfaces can be built on top of the design pattern library. Currently, a
Motif interface is used to let users specify complex process graphs using functions provided in
the library (Figure 8). This interface is designed for those who want to use all the features
of the design pattern library. It visualizes nodes, design patterns and their interconnections
graphically on a drawing canvas as process graphs. The interface is especially useful when
the user needs to use the composition and refinement features of DPnDP because a graphical
representation of a process graph is easier to visualize and modify. In the future, this interface
will integrate more supporting tools for programming and executing parallel programs. A
World Wide Web interface is under construction to let a user specify design patterns through
the HTML forms and then retrieve the packaged and compressed code skeleton across the
Internet. This interface allows casual users to experiment with DPnDP without installing and
setting up the whole system.

DPnDP-Maininterface I |
[Refresh] [Generte] [Manizar] [Mae]

Canvas s Compositional || Action = DawfConaect] || P = Master/Slave

I Load Save Save ax.

Canvas

Help
Compositional
O Stand<alone
i Dexign_pattom
& Delete
& Mave
Dewign=pattors
— ___________________________________Ff

Figure 8: Motif Interface for DPnDP

Another component of DPnDP is a thin message passing library called “Node Layer” [4]
where particularities of different message passing libraries are abstracted by a common pro-
gramming interface. It has been designed so that it can be ported atop most of the popular

message passing libraries such as PVM, MPI, etc. It encapsulates complex message passing
code into C++ objects and function calls so that the code skeleton generated by DPnDP would
be easier for the user to understand and modify.

One powerful aspect of this model is that the programmer is not restricted to developing
the complete application using only the high level design patterns in DPnDP. The system
is open and the code skeletons generated can be easily understood and modified to tune for
performance. Also, development of an application can combine high level design patterns with
low level message passing features. For example, in our present implementation, the message
passing layer is built using PVM. Therefore, nodes in an application that are not associated
with any design pattern could use any message passing feature of PVM. This also allows design
patterns to be used only as part of a bigger PVM program.

Another important feature is extensibility. By laying down a uniform way of defining and
implementing design patterns, programmers can develop new patterns and add them to the
library incrementally, thus making the system truly extensible. A large collection of commonly
used patterns would enhance the utility of the system as well.

DPnDP has been implemented using workstation clusters that run under UNIX. Work is
also in progress to port the system to tightly coupled message passing and shared memory
multiprocessors.

4 Related Research Works

A number of researchers and system designers have recognized the significance of commonly
occurring parallel structures. A number of parallel programming systems support such struc-
tures [3, 11, 1, 13, 10, 14, 12, 2]. The design of DPnDP has in part been inspired by this large
body of work. However, DPnDP differs from most of the previous systems in three significant
aspects.

Firstly, most of the previous systems support only interconnection of modules (possibly with
special syntax) to perform replication, fan in or fan out. There is no encapsulation of higher
level communication behavior as design patterns. Furthermore, for systems that support higher
level design patterns, such as TRAC [2], their structure and behavior are not parameterized.
This, for example, would require separate patterns for divide and conquer with different depths
and widths. DPnDP tries to raise the level of abstraction to provide parameterized parallel
structural and behavioral design patterns. They can be used in different context when supplied
with different parameters.

Secondly, the support for high level parallel structures in most previous systems is built
directly into the design (and implementation) of the system. This would mean that only
system programmers can add new parallel structures to the system and it usually requires
major modification. The users cannot add their own parallel structures for reusability. On the
other hand, in DPnDP, the context insensitive nature of the design patterns allows gradual
addition of new patterns to the system. For example, even the existing library of design
patterns of DPnDP can support all the high level structures found in systems like FrameWorks
[13], Enterprise [10], HeNCE [1], DGL [7], etc.

Thirdly, most often while developing applications with such systems, the user is restricted
to using only the high level structures supported by the system. If the user’s application

requires certain structures that are not directly supported by the system, it may be very
difficult or even impossible to develop the application using the system. In DPnDP, the use of
design patterns can be combined with the use of primitives supported by the lower layers of
the system.

To the best of our knowledge, TRAC [2] is the only other parallel programming system
that has the goal of providing openness and extensibility while supporting high level parallel
structures. However, there are two major differences between TRAC and DPnDP. In TRAC,
the user can design certain multiprocess structure, save it in the library and use it later. The
system does not use any standard interface for design patterns. This would adversely impact
the capability to compose or refine an application using more than one design pattern. Also,
the structural aspects of design patterns are not parameterized.

5 Summary

DPnDP is the first system that has demonstrated implementation and use of parameterized
application independent design patterns as a library of code skeletons. The library is extensible.
A parallel application can be composed using several design patterns. Also, design patterns can
be combined with parts that may use low level communication and synchronization primitives.

6 Acknowledgments

This research was conducted using grants from the Natural Sciences and Engineering Research
Council of Canada and IBM Canada Ltd.

References

[1] A. Baguelin, J. Dongarra, G. Giest, R. Manchek, and V. Sunderam. Graphical develop-
ment tools for network-based concurrent computing. In Supercomputing’91, pages 435—
444, 1991.

[2] A. Bartoli, P. Cosini, G. Dini, and C.A. Prete. Graphical design of distributed applications
through reusable components. IEFEE Parallel and Distributed Technology, 3(1):37-51,
1995.

[3] M. Cole. Algorithmic skeletons: Structured management of parallel programming. MIT
Press, Cambridge, Mass., 1989.

[4] M. De Simone. Openness and extendibility in high level parallel programming systems.
Electrical and Computer Engineering Dept., University of Waterloo, 1995. Internal report.

[65] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Publishing Company, 1994.

[6] G. Geist and V. Sunderam. Network-based concurrent computing on the PVM system.
Concurrency: Practice and Ezperience, 4(4):293-311, 1992.

[7] R. Jagannathan, A.R. Downing, W.T. Zaumen, and R.K.S. Lee. Dataflow based tech-
nology for coarse-grain multiprocessing on a network of workstations. In International
Conference on Parallel Processing, pages 209-216, August 1989.

[8] S.J. Leffler, M.K. McKusick, M.J. Karels, and J.S. Quarterman. The design and imple-
mentation of 4.3 BSD Unix operating system. Addison- Wesley Publishing Company, Inc.,
1990.

[9] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and H. Shi. On the versatility of
parallel sorting by regular sampling. Technical report, University of Alberta, June 1991.

[10] J. Schaeffer, D. Szafron, G. Lobe, and I. Parsons. The enterprise model for developing
distributed applications. IEEFE Parallel and Distributed Technology, 1(3):85-96, 1993.

[11] Z. Segall and L. Rudolph. PIE: A programming and instrumentation environment for
parallel processing. IEEE Software, 2(6):22-37, 1985.

[12] A. Singh, J. Schaeffer, and M. Green. A template-based tool for building applications in
a multicomputer network environment. In D. Evans, G. Joubert, and F. Peters, editors,
Parallel Computing 89, pages 461-466. North-Holland, Amsterdam, 1989.

[13] A. Singh, J. Schaeffer, and M. Green. A template-based approach to the generation of
distributed applications using a network of workstations. IFEFE Transactions of Parallel
and Distributed Systems, 2(1):52-67, January 1991.

[14] A. Singh, J. Schaeffer, and D. Szafron. Experience with template-based parallel program-
ming. Submitted to a Journal, 1996.

[15] L. Wall and R. L. Schwartz. Programming perl. O’Reilly & Associates Inc., 1991.

