
 

  

YODA 

Phase 2 

Group 17 

Daniel Donaldson 
Gregory Ireland 

 

VADER 
Versatile Accelerated Digital 

Encryption Recovery 

 VADER is a digitally accelerated add-on hardware device designed to 
recover passwords using an acquired hashed password and hashing 
function. It is designed to be run on an FPGA to reconfigure itself 
best to the hashing function required 

EEE4084F 
10 May 2012 



YODA Phase 2 

VADER 

 

 
 

I 

Table of Contents 
Table of figures ....................................................................................................................................... ii 

1. Introduction .................................................................................................................................... 1 

1.1 The problem and solution ....................................................................................................... 1 

2. Skills identification .......................................................................................................................... 2 

3. Methodology ................................................................................................................................... 3 

3.1 Project Objective ....................................................................................................................... 3 

3.2 Design Problems ....................................................................................................................... 4 

3.3 Proposed Solution ..................................................................................................................... 4 

3.4 Evaluation: ................................................................................................................................ 5 

4. Modelling and analysis .................................................................................................................... 6 

4.1 Modelling Design Problems .................................................................................................... 6 

4.2.1 Block Diagram ........................................................................................................................ 7 

4.2.2 UML diagram .......................................................................................................................... 7 

4.3 Design Discussion: ......................................................................................................................... 8 

4.4 PC-based gold solution .......................................................................................................... 10 

4.5 Wish list features .................................................................................................................. 10 

5 Performance evaluation ............................................................................................................... 11 

5.4 Explanation of hashing algorithms ........................................................................................ 11 

5.5 Performance analysis of PC based solution .......................................................................... 12 

5.6 Performance analysis of FPGA based solution ...................................................................... 12 

5.4 Evaluation steps for PC and FPGA solutions ............................................................................... 16 

Works Cited ........................................................................................................................................... 18 

Appendices ............................................................................................................................................ 19 

Appendix A – Timing of hashes ......................................................................................................... 19 

Appendix B – Gold standard main.cpp.............................................................................................. 21 

Appendix C – Timing standard test results ....................................................................................... 24 

Appendix D – VHDL code .................................................................................................................. 25 

 

  



YODA Phase 2 

VADER 

 

 
 

II 

Table of figures 
Figure 1: Project Methodology Process Flow ......................................................................................... 3 

Figure 2: Block diagram of systems ........................................................................................................ 7 

Figure 3: UML diagram of connected systems ........................................................................................ 8 

Figure 4: SHA-1 Hashing operation ....................................................................................................... 13 

Figure 5: Schematic diagram for one reconfigurable block .................................................................. 14 

Figure 6: Simulation of SHA-1 algorithm ............................................................................................... 15 

Figure 7: SPARTAN-3 utilisation summary ............................................................................................ 16 

 

Table 1: Performance of PC solution .................................................................................................... 12 

Table 2: Clock cycles of PC solution ...................................................................................................... 12 

Table 3: Comparison of golden measure and FPGA solutions .............................................................. 16 



YODA Phase 2 

VADER 

 

 
 

1 

1. Introduction 
The YODA topic presents the reconfigurable hardware problem – it is no small task to find a use for 

the powerful reconfigurable hardware we have in this present day. We were tasked with creating a 

digital accelerator (YODA - Your Own Digital Accelerator), essentially an add-on card which speeds 

up processing for a particular solution. This report covers first a brief overview of the problem and 

solution. The skills required to complete such a task are investigated and then it moves on to explain 

the method we will use in order to solve the problem. The overall problem is modelled and a 

performance yardstick established – the golden measure. An evaluation of the design solution 

follows using the PC based golden measure and the digital accelerator based solution. The steps 

taken to evaluate the performance of the two implementations are discussed finally. 

1.1 The problem and solution 
The problem proposed is to speed up computationally expensive recovery of passwords for forensic 

purposes such as instances where a victim or suspect’s password protected information could assist 

in an investigation. In order for the system to begin, the specific hashing function used to create the 

password hashes would need to be acquired; it is assumed that this is available as many commonly 

used hashing functions are indeed widely available. The hashed version of the password itself would 

also need to be acquired. The system will run parallelized functions on an FPGA to accelerate the 

recovery of the password. The solution for this is the VADER system. VADER is a digitally accelerated 

add-on hardware device designed to recover passwords using an acquired hashed password and 

hashing function. It will be designed using reconfigurable hardware such as an FPGA. 

Further design problems (to be answered in this report) are: 

 Possible decision to use one or more soft-core processors on the FPGA for implementing the 
cracking function or to control the system. 

 How to implement a dictionary on the FPGA memory. 

 Possibility of creating a reconfigurable computer, which changes its hardware depending on 
whether a dictionary or brute force attack is being run. 

 Extent to which the functions should be parallelized (fine or coarse grained). 

 Number of parallel computational components to use. 

 How to effectively develop and test the software or HDL designs. 

 How to correctly interface with the system using USB. 
  



YODA Phase 2 

VADER 

 

 
 

2 

2. Skills identification 
In order to successfully implement VADER onto a FPGA, a lengthy design process must be 

undertaken. This is the first skill that will be needed – engineering design. It is important that 

designing engineers have an understanding of reconfigurable computing, specifically that of an 

FPGA. Even more specifically, the engineers should be comfortable with learning ins and outs of the 

Nexys2/3 [1] as this will be the FPGA used for this project. A deep understanding of the 

reconfigurable and performance aspects of these FPGAs will be critical to the success of the VADER 

project [2]. 

Before the FPGA development can begin, however, we need to be acquainted with schematic and 

UML design. This will aid greatly in the system breakdown and identification. Once broken down into 

systems, we can begin to delve deeper into the hashing algorithms that we will be implementing in 

these systems. In order to create a “Gold Standard” the algorithms will need to be implemented on a 

PC. This requires competency in C programming, as well as the finding and use of reusable hashing 

libraries. In order to understand the performance metrics and compare them to the gold standard, 

an understanding of x86 and FPGA instructions should be present at a basic level. 

Once the design stage has been finalized we can begin simulating, and eventually programming, the 

FPGA based solution. This will require proficiency in HDL programming as well as testing with an IDE. 

Specifically, VHDL programming skills will be used for this programming. Familiarity with the ISE 

development environment is necessary to properly simulate and demonstrate the code before it is 

implemented on the development boards. In order to finalise the solution, we will need to be able to 

program and test on the Nexys2 board. 

  



YODA Phase 2 

VADER 

 

 
 

3 

3. Methodology 
The methodology used for this project can be summarized by the following process flow diagram 

depicted in figure 1. The basic structure of the methodology is presented and a more in-depth 

explanation is outlined thereafter.  

 

Figure 1: Project Methodology Process Flow 

3.1 Project Objective 

Deciding on the actual project objective is a vital first step in defining a project. The requirements of 

the system need to be clearly laid out and the project needs to be designed from the start to satisfy 

the desired objective. If the objective of the project is poorly understood there is an increased risk of 

the wrong system being developed. [3] [4] 

The proposed “plan A” project objective would be to create a solution with maximum 

performance(for which metrics will be explained later) and maximum system versatility in terms of 

password recovery for different types of password hashing functions. This would be the idealized 

project plan, maximum resources would be put into the development of the best possible system 

but this plan would also likely have the most risks involved. 

The methodology will also include a “plan B”, this plan would be implemented if the plan A failed or 

is not going to be completed in time. The difference from plan A is that plan B will be a significantly 

simplified version of plan A. The main objective of plan B would be to make a system with a faster 

development time. This would involve making the system simpler in terms of capability and 

mitigating project risks that could set the development back. Plan B should try to use as much 

working design that plan A already developed to try speed up the process. Performance would 

probably be lower, but so would total development time.  

Objective 
•First step 

•Clearly define requirements of the system 

•Make sure the objective of the system is well 
understood 

Design Problems 
•Develop a list of design problems and design 

questions for achieving the objective 

•Develop design problems for the ideal plan 

•Design a set of problems for a contingency 
plan 

Solution 
•Answer Design Questions 

•Make use of all possible resources 

•UML and Block Diagrams 

•Move to contingency plan if first plan fails. 

Evaluation 
•Verification and Validation 

•Full tests for functional block 

•Performance metrics and speedup 

•Correctness Testing (blocks and system) 

•Does the system achieve the objective? 



YODA Phase 2 

VADER 

 

 
 

4 

3.2 Design Problems 

Once the project objective is well understood the design of the actual system can begin to take 

place. The engineers need to identify relevant design problems or design questions which through 

solving or answering should effectively meet the objective of the system. All of the problems that 

will be identified will have to be adequately suited to ensure time is spent where it is most valuable 

to achieving the solution. 

For this project some design questions have already been identified in phase 1 and repeated in the 

introduction of phase 2, later in the Modelling and Analysis section a list of more in-depth design 

questions will be posed and answered. 

Almost all of the design problems for plan A will be relevant for contingency plan B, some will simply 

be less relevant and others can be ignored. The design decisions for plan B would differ mostly in 

adding questions on how to improve, change, mitigate risks or speed up plan A. These are 

mentioned below: 

 How to minimize development time, what aspects of the design would be time consuming 

or risky and how can these be simplified or removed without removing too much 

functionality? 

 How to effectively reduce functionality without defeating the point of the system. 

 How many hashing functions should be included? 

 Can the system blocks themselves be simplified to make development faster and to make 

the design as a whole simpler? 

 Can testing be simplified to speed up the evaluation stage? 

3.3 Proposed Solution 

Proposing a solution would be made possible by systematically solving and answering the design 

problems and questions identified while explicitly keeping the project objective in mind. Solving 

these problems may need multiple sources of answers for completion. Much of the information 

needed to solve these issues the engineer may already have but a more in-depth look at the system 

and external sources is likely needed to propose an effective solution. 

Reference manuals or product datasheets would likely be an essentially valuable resource in 

effectively answering many design problems and can be used to get a good idea of how to compare 

candidate systems, and once chosen the information within would be essential for completing your 

solution with that system. 

Block and UML diagrams would be fundamental in proposing a solution; they will be used for getting 

your ideas into a practical form and can be a powerful tool in breaking down the functionality of the 

system into understandable parts. Solutions to each of these parts of the system can then be tackled 

in more depth. Diagrams such as these are also very important in conveying your ideas to other 

people in the design process as they can then see the functionality you wish you incorporate and can 

more effectively add to change your designs. 

Multiple solutions may exist and the best solution may not often be clear to the team, if possible 

keeping all solutions viable in the design until it is possible to test them for suitability would produce 



YODA Phase 2 

VADER 

 

 
 

5 

the best result for the system.  

Proposing a solution is no easy task; engineers might find that after battling with a particular design 

problem for a long time no feasible solution to the problem exists. This is where the plan b proposed 

would have to be considered; the problematic part of the system may have to be scrapped at the 

cost of functionality or simplified at the cost of performance. Ultimately the plan B solution used 

would need to try speed up the development as much as possible while minimizing performance lost 

or possible functionality or versatility being removed as a result. 

3.4 Evaluation: 

Once a proposed solution has been formulated Verification and Validation of the system will need to 

take place. Verification of the system mostly involves testing the system to see if it’s actually doing 

what it was designed to do. I.e. is the system actually working, are the separate components working 

correctly etc? Validation is done to test if the system as a whole is the right product, i.e. does it fit 

the original specification and meet its purpose, and if it doesn’t meet the objective the design 

process may have to be repeated to correct the problem. [4] 

The testing of each hashing type encompassing its own specific hardware blocks would need to 

include a full retesting of the system except for the hash unspecific circuitry. This RC component of 

the system would likely significantly increase the evaluation time of the system, increasing for every 

separate hashing function implemented. 

Although performance metrics such as throughput or latency to solution could be tested in the 

system these methods are all relative to another implementation and not fully relevant to the 

system. Latencies for example could be extremely long for finding a long password using the brute 

force attack and may not be very productive for testing the system. A more relevant performance 

metric would be the number of hashes per unit time, say hashes per second. This would allow the 

system performance to be tested without requiring the actual solution to be found. 

Evaluation of the speedup seen by adding more computational blocks in parallel is vital for finding 

the correct number of processing blocks to include in the system. The maximum speedup will 

ultimately be limited by the sequential part of the processing which will mostly lie within each 

hashing function; Amdahl’s law will limit the total possible speedup. [5] 

Correctness tests would also need to be carried out, these could be done in different stages namely: 

individual processing blocks and the system as a whole. 

Individual blocks would need to be tested for correct functionality such as the hashes themselves to 

see if the hashing function is correct, the test word generator block, the control circuitry, 

comparators etc.  all need to be tested for consistency. 

Finally the entire system needs to be validated. The system as a whole needs to be tested to see if it 

actually meets its original objectives and specification. This would include rating the performance of 

the system compared to the objective as well as rating the systems versatility. If the validation 

criteria are not met, the system may have to be redesigned and then re-implemented costing a lot of 

time and setting back the development significantly. [4] 



YODA Phase 2 

VADER 

 

 
 

6 

4. Modelling and analysis 

4.1 Modelling Design Problems 
Detailed design problems to be answered while creating the model of the system: 

1. Choice of FPGA. Based on number of LE’s, interconnects, extra peripherals on the board, I/O 

pins, availability of LAN, USB, external memory are all important criteria for choosing the 

right FPGA. 

2. Decision to create a RC system. By having an RC device, different hardware designed to 

implement different hashing functions can be programmed onto the device to allow multiple 

types of hashing functions to be cracked. 

3. Decision to include a dictionary based password attack. Could speed up password recovery if 

password is in dictionary. 

4. Implementation of brute force algorithm. How would one implement a brute force 

algorithm on the FPGA and make it able to output parallel test words. 

5. How to interface with the PC. I.e. LAN, USB, Serial etc.  

6. Decisions for storing the dictionary on the FPGA. Deciding whether to load it into RAM or 

use a FLASH based dictionary or both (FLASH loaded into RAM by system). The dictionary 

could also possibly be implemented using the FPGA itself to create a “RAM block” 

7. Composition of “Functional processing blocks” and their usage. This would involve designing 

a set of digital blocks that will do the actual processing within the system. Each one of these 

blocks should be able to do its processing in parallel with other copies of the blocks. 

8. Dealing with a likely memory bottleneck for dictionary attack. It is likely that the memory 

won’t be able to be read fast enough to send a word to every processing block causing a 

processing slow down. 

9. A decision on how many of these blocks to incorporate would need to be based on a few 

things, namely: 

a. Tests on the system showing speed versus processing blocks used.  

b. Making use of as much of the FPGA’s PLEs to make sure the FPGA is being efficiently 

minimizing unused elements. 

c. Monitoring performance trade-offs that may include a slow-down of the system 

from control overhead or generation of test-passwords if too many functional blocks 

are used.  

 

 

 

 

 

 



YODA Phase 2 

VADER 

 

 
 

7 

Here the proposed block and UML diagrams of the system are presented for reference. They are 

discussed and analysed in the following sections. 

4.2.1 Block Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Block diagram of systems 

4.2.2 UML diagram 

 

 

 

 

 

 

Figure 2: Block Diagram of Vader 

 

 

Generator Unit Hashing Unit Comparator 

Control 

Unit 

Hashing Unit Comparator 

Hashing Unit Comparator 

Handshaking 

lines 
Spartan 3 FPGA Nexys2 

Platform 

Flash 

(ROM) 

Cypress 

USB 

controller 

JTAG 

Data 

Port 

Original Hash to 

compare to  Dashed line: 

indicates area 

which is 

reconfigurable for 

other hashing 

types  

Test Word Bus  
Hashed word 

from Hashing 

unit 
Flag lines connect to 

CU (not shown)  

Flag  

Flag  

Flag  



YODA Phase 2 

VADER 

 

 
 

8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: UML diagram of connected systems 

4.3 Design Discussion: 
The design discussion is mostly laid out in the form of how the design decisions were answered and 

through this the proposed solution itself is explained and analysed. 

The choice of FPGA was not a seriously considered design problem as the decision has been set out 

for us in the project requirements and as such the Nexys2 board with the Spartan3 FPGA will be used 

for the design of the system. 

The proposed system solution will be partially reconfigurable. The PC will configure the system for 

the selected type of hashing function and the appropriate hardware required for that type of hash 

will be configured onto the FPGA.  This would require the functional blocks described later to be 

VADER 

Nexys2 

Cypress USB 

controller 

Spartan 3 FPGA 

Functional Blocks 

Computational 

Blocks 

Generator Unit 

Hashing Block Comparator 

Platform Flash 

Control Unit 

Flags 

Sends hashes to 

Sends words to 

PC 
Interfaces with 



YODA Phase 2 

VADER 

 

 
 

9 

designed for each type of hashing function to be implemented. The reconfigurable portion of the 

system is shown by a dashed box outline for clarity. 

The decision was made to forgo the implementation of a dictionary based attack. The cost of 

implementing a dictionary attack simply didn’t balance the possible benefit. Although performance 

of recovering passwords that are actually in the dictionary would almost definitely be faster by using 

this approach it probably wouldn’t be faster than a PC based dictionary solution. This comes down to 

the lower clock speed of the FPGA and much slower memory access. To improve the performance of 

the dictionary attack while still implementing a 2nd try brute force attempt it would likely require the 

system to be fully reconfigured for each type of attack. The added complexity of creating a 

dynamically reconfigurable system would significantly increase the risk of the project not being 

completed or meeting its objectives. 

In addition, by not including a dictionary attack many of the design issues relating to the memory 

access of the flash/ram can be alleviated, relieving a lot of strain on the design and required 

hardware to access and control the memory. 

Interfacing with the device from the PC will be done using the on-board Cypress USB controller. 

During testing however to use the system without a fully functional USB interfacing block, software 

on the pc will be used to load values in and out of the Nexys2. 

The design will include several “Functional blocks“. A fundamental computational component block 

will be created. It will include a hashing function block and comparator to check if the hash value 

corresponds to the given password hash, the comparators will put out a flag if the correct password 

is found. By designing these as functional blocks they can be independently created for different 

hashing types that would require different hardware for efficient implementation. 

These blocks will get a test-word from the generator circuit and will be required to the hash value 

through to the comparator. Once a comparator matches a correct hash it will assert its flag line, the 

control unit will then know which comparator found the correct value and subsequently will know 

the test word that hashed to the correct value. Multiples of these computational components will be 

designed to be programmed onto the FPGA and run in parallel to form the basis of the system’s 

computation. 

A test-word generator block will be needed and is shown in the diagram; it will run the brute-force 

algorithm and generate test words for the computation blocks. It will then need to feed these test 

words to the computational blocks. Ideally this generator circuit should be able to run 

asynchronously to the computational blocks as generating a test word from the brute-force 

algorithm will take far less time than the actual computation of the hash. If the generator block is 

asynchronous to the computational blocks handshaking lines will need to be implemented to ensure 

the computation blocks are getting correct values. Adding the complexity of handshaking to the 

system for the purpose of speeding up test word allocation will cause a trade off that would need to 

be tested in simulation to achieve the best solution. 

A simple control unit would need to be put in place to guide the basic operation of the system; it 

would be placed as part of the generator circuit and will dictate the flow of the system. It will have 



YODA Phase 2 

VADER 

 

 
 

10 

functions to guide operations of the system, such as making the USB controller read in and out 

values from the PC, running the password testing process and handling flags generated by the 

system, this circuit will also store the words that are being tested by the hashing units and if found 

to be the correct hash will be read back to the PC through the USB connection. 

Making a decision on the number of computational blocks would first be based on fitting the 

maximum possible amount of parallel processing blocks that the FPGA size will allow. The aim would 

be to program enough computational blocks onto the FPGA to gain as much speed up as possible 

compared to the golden standard. However, in order to make an informed decision on this 

simulations would have to be run on the system to see if the desired effect is achieved, for example 

additional overhead introduced for instance by the increased size of the generator circuit or 

increased bus lines required may cause a negative effect on performance and fewer blocks may 

need to be implemented. 

4.4 PC-based gold solution 
The PC-based gold solution is simple enough to implement since there is a large number of freely 

available libraries on the internet to perform hashing. The main.cpp of gold standard can be found in 

Appendix B.  It can be used to measure the time of execution to find the correct password, given the 

hash and hashing algorithm, and will provide a basis for performance evaluations. There is also an 

implementation in Appendix A, which is useful to calculate the throughput for different hashes, 

which may be used to compare to the FPGA solution. 

The gold solution is written in C++, and is run on only 1 CPU core.  

4.5 Wish list features 
The main wish-list function to add would be the implementation of a dictionary based attack and 

with this to make the system dynamically reconfigurable. By doing this the system can reconfigure 

itself for a more effective implementation of a dictionary attack and following failure through a 

dictionary attempt reconfigure itself to a specialized brute-force attempt to ensure a solution is 

found. 

Another wish list function could be to find collisions in the given hashing algorithm, by using 

collisions in a hashing algorithm the method for finding a suitable password from a hash is 

significantly faster albeit more complicated than a simple brute-force attempt. These are already 

present in the MD5 [6], SHA1 [7] and SHA2 [8] functions and being actively researched. A different 

design which implements collisions could be developed at a later stage or revisit to the project.  



YODA Phase 2 

VADER 

 

 
 

11 

5 Performance evaluation 
The performance of the FPGA based accelerator and the PC based gold standard need to be 

compared in order to establish the effectiveness of this solution. These will be done separately and 

then compared, but first it is important to understand the hashing algorithm. This can then be 

properly analysed for the PC and then FPGA solutions. 

5.4 Explanation of hashing algorithms 
It is important that the complexity of the hashing algorithm be inspected, in order that we might see 

how they perform on a PC, and then how they may lend themselves to being implemented on an 

FPGA. For this, we will look first look at the MD5 algorithm, and then expand this to other 

cryptographic algorithms. Only the calculation parts are relevant, and so much has been omitted. For 

the full explanation of this, see reference [9]. Pseudocode for generic MD5 algorithms is as follows: 

//Initialize constants 

//Append message to make 512 bits 

//Process the message in successive 512-bit chunks: 

for each 512-bit chunk of message 

break chunk into sixteen 32-bit little-endian words w[j], 0 ≤ j ≤ 15 

//Initialize hash value for this chunk: 

varint a := h0 

varint b := h1 

varint c := h2 

varint d := h3 

//Main loop: 

fori from 0 to 63 

if 0 ≤ i ≤ 15 then 

f := (b and c) or ((not b) and d) 

g := i 

else if 16 ≤ i ≤ 31 

f := (d and b) or ((not d) and c) 

g := (5×i + 1) mod 16 

else if 32 ≤ i ≤ 47 

f := b xor c xor d 

g := (3×i + 5) mod 16 

else if 48 ≤ i ≤ 63 

f := c xor (b or (not d)) 

g := (7×i) mod 16 

temp := d 

d := c 

c := b 

b := b + leftrotate((a + f + k[i] + w[g]) , r[i]) 

a := temp 

end for 

//Add this chunk's hash to result so far: 

h0 := h0 + a 

h1 := h1 + b 

h2 := h2 + c 

h3 := h3 + d 

end for 

var char digest[16] := h0 append h1 append h2 append h3 

 



YODA Phase 2 

VADER 

 

 
 

12 

For further investigation, two more common hashing methods will be investigated: SHA-1 [10]and 

SHA-2 [11]. SHA2 is the most secure – MD5 and SHA-1 are both susceptible to hacking methods 

other than brute force [12]– but all are still in widespread use on the internet [13]. The performance 

for the PC and FPGA solutions will now be investigated. 

5.5 Performance analysis of PC based solution 
The MD5 algorithm when put on a PC runs the code in a sequential manner, and compiler 

optimisations make little difference to it. In order to get performance measures for the different 

hashing algorithms, we stated that we shall look at the following:  latency, throughput, and the 

speedup vs. Gold standard. Of these, throughput is the most intuitive measure, and can be 

measured in hashes per second, or bits per second to compare better between different hashes. The 

full calculation can be found in Appendix C. All tests were done on an Intel Core i5-2557M 1.7GHz, 

running at single core turbo of 2.7GHz, with 4GB DDR3 RAM. The phrase “hello world” was encoded 

using the applicable hashing algorithms for 5 million hashes. The relevant results are shown below: 

Table 1: Performance of PC solution 

 Average Runtime Bits Hashes/second Mb/s 

MD5 17.13 128.00 291883.31 37.36 

SHA1 17.55 160.00 284948.99 45.59 

SHA256 6.34 256.00 788328.12 201.81 

SHA512 8.36 512.00 597893.02 306.12 

The above performance measures give something for the FPGA to live up to. 

Another interesting measure to look at is the amount of clocks used to calculate each hash. This is 

shown below, using the turbo clock of the CPU: 

Table 2: Clock cycles of PC solution 

 Hashes/second CPU Clocks per second Clocks/hash 

MD5 291883.31 2700000000 9250.27 

SHA1 284948.99 2700000000 9475.38 

SHA256 788328.12 2700000000 3424.97 

SHA512 597893.02 2700000000 4515.86 

This is perhaps a more relevant measure. If we look at the amount of clock cycles used to calculate 

the hashes, we see that it is a very inefficient process. The aim is to create a massively parallel, 

reconfigurable FPGA solution. 

5.6 Performance analysis of FPGA based solution 
The implementation of these algorithms onto an FPGA will now be proposed, along with the 

projected performance metrics. The simplest way to do this is to use the clock cycles from start to 

finish for the hashing method; this is done below. 

Since this hashing operation takes in 512 bit blocks and words are read in using 32-bit words we 

require 16 clock cycles to fully read in the hashing block.  

By looking at first at the SHA-1 algorithm, we see that most of it can be done in a few clock cycles - 



YODA Phase 2 

VADER 

 

 
 

13 

one per iteration - rather than a few thousand as with the CPU code. A single MD5 operation is 

visualised in the following figure [14]: 

 

Figure 4: SHA-1 Hashing operation 



YODA Phase 2 

VADER 

 

 
 

14 

This above operation must be performed 80 times for the complete hashing operation. The final 

stage of the hashing operation is to output the 160-bit hash. This is done in 5 clock cycles. The total 

clock cycles for the above operations comes to 101; however we will see if any optimisations can be 

done in code to reduce this. 

The SHA-1 algorithm was implemented in VHDL code (using an implementation from opencores.org), 

as well as a comparator in order to make a single reconfigurable block system as described above. 

The schematic diagram is shown for this below: 

 

Figure 5: Schematic diagram for one reconfigurable block 



YODA Phase 2 

VADER 

 

 
 

15 

Note that this is a debug implementation, and the full solution will not require the intermediate 

hash, valid, bit_prb and correct_prb lines. 

The 16 clock input was parallelised with the 80 clock loop which gave a faster implementation. The 

following figure simulates the performance of the SHA-1 algorithm using this VHDL code. The input 

data was ‘abcde’ in text form, or 

0x6162636465800000000000000000000000000000000000000000000000000000000000000000000

0000000000000000000000000000000000000000000000028 in the padded hexadecimal message 

input. The 0x00000028 at the end denotes the length of the code to be hashed (the last 64 bits store 

the length). This was input over 16 clocks. The golden standard showed the hashed value of this to 

be 0x03DE6C570BFE24BFC328CCD7CA46B76EADAF4334 in hexadecimal.  

 

Figure 6: Simulation of SHA-1 algorithm 

Counting the number of clocks from the when it is reset to when the full hash is output gives 89 

clocks (plus one to compare which was not timed in the golden standard). The output hash is the 

same as that generated by the PC golden standard (and confirmed by other online SHA-1 

generators). The clock period used is 10µs, however the clock period for the SPARTAN-3 FPGA is 

20ns (50MHz clock). Using the SPARTAN-3, the total execution time for the hashing function is 

1780µs. This gives a total of 561 797 hashes per second, or 89.89Mbits/s. 

The SHA-1 core is a large one, and in some places inefficient (e.g. multiple casts need to take place to 

add signals each time), and as such uses up a large portion of the FPGA slices. Simulated on a 

SPARTAN-3, the total reconfigurable block uses up 44% of the 1536 flip flops, 57% of the input LUTs, 

and 74% of the total slices. This is without the control and generator unit, and thus denied us the 

possibility of placing more than one of these reconfigurable blocks in order to perform calculations 

in parallel. A larger FPGA or better optimisation would be required for a fully parallel solution. 



YODA Phase 2 

VADER 

 

 
 

16 

 

Figure 7: SPARTAN-3 utilisation summary 

5.4 Evaluation steps for PC and FPGA solutions 
The evaluation steps for comparing the PC and FPGA solutions has been discussed roughly over the 

past paragraphs, and so it must be properly established. As with the PC based standard, hashes per 

second remains a very important metric, and shall be used to compare the two solutions; most 

importantly though, the intended purpose should be tested. This is done using the PC based gold 

standard in which the user chooses a password to find, and hashing method. The program then 

iterates through all possible combinations until it finds a correct password, upon which time it exits. 

A similar scenario will be posed to the FPGA/Nexys2 based solution, where it will receive the 

password, be configured for a specific type of hashing, and it will run until it finds a password. The 

CPU program returns its time to find the password, which will be compared to the execution time of 

the Nexys2 based solution. This will provide a confident measure of effectiveness of the YODA 

design, and will enable the designers to accurately evaluate the performance of both 

implementations 

Using the above performance metrics, we can compare the PC based golden measure and the VHDL 

solution (using simulated data). A table best summarises this: 

Table 3: Comparison of golden measure and FPGA solutions 

SHA-1 Hashing Golden measure SPARTAN-3 

Clocks/hash 9475.38 89 

Clocks/second 2700 000 000 50 000 000 

Hashes/second 284 949 561 797 

Mbits/second 45.59 89.89 

 

The FPGA based solution is twice as fast as the CPU based solution (using a low-end FPGA). Using a 

faster FPGA, with more resources and a higher clock speed, and further optimisation of the 



YODA Phase 2 

VADER 

 

 
 

17 

algorithm in order to parallelise the hashing could yield a password cracker that vastly exceeds the 

golden measure.  

  



YODA Phase 2 

VADER 

 

 
 

18 

Works Cited 

[1] Digilent. (2007, July) Nexys2 reference Manual. Reference Manual. [Online]. 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2%2C400%2C789&Prod=NEXYS2 

[2] Simon Winberg. (2012, April) Vula UCT Student Site. [Online]. www.vula.uct.ac.za 

[3] Steve Easterbrook. (2004, Janurary) What is Requirements Engineering? dpf Document. 

[4] Charles M. Macal. (2005, April) Model Verfication and Validation. Lecture Slides pdf. 

[5] Michael R. Marty Mark D. Hill. (2008, July) Amdahl's Law in the Multicore Era. pdf Document. 

[6] Vlastimil Klima. (2006, April) Tunnels in Hash Functions: MD5 Collisions Within a Minute. 

Document Extract. 

[7] Stephane Manuel. (2008) Classification and Generation of Disturbance Vectors - International 

Association for Cryptologic Research. [Online]. http://eprint.iacr.org/2008/469.pdf 

[8] Somitra Kumar Sanadhya and Palash Sarkar. (2008) New Collision attacks Against Up To 24-step 

SHA-2 - International Association for Cryptologic Research. [Online]. 

http://eprint.iacr.org/2008/270.pdf 

[9] R. Rivest. (1992, April) The MD5 Message-Digest Algorithm - The Internet Engineering Task 

Force (IETF). [Online]. http://tools.ietf.org/html/rfc1321 

[10] 3rd D. Eastlake. (2001, September) US Secure Hash Algorithm 1 (SHA1) - The Internet 

Engineering Task Force (IETF). [Online]. http://tools.ietf.org/html/rfc3174 

[11] D. Eastlake 3rd. (2011, May) US Secure Hash Algorithms - The Internet Engineering Task Force 

(IETF). [Online]. http://tools.ietf.org/html/rfc6234 

[12] M. Cochran, T. Highland J. Black. (2009, December) University of Colorado. [Online]. 

http://www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf 

[13] L. Chen S. Turner. (2011, March) Updated Security Considerations for the MD5 Message-Digest 

and the HMAC-MD5 Algorithms - The Internet Engineering Task Force (IETF). [Online]. 

http://tools.ietf.org/html/rfc6151 

[14] Matt Crypto. (2007, August) One MD5 operation. [Online]. 

http://en.wikipedia.org/wiki/Image:MD5.png 

[15] Kris Gaj. (2012, March) ATHENa: Automated Tool for Hardware EvaluatioN. [Online]. 

http://cryptography.gmu.edu/athena/index.php?id=source_codes 

 

http://www.digilentinc.com/Products/Detail.cfm?NavPath=2%2C400%2C789&Prod=NEXYS2
www.vula.uct.ac.za
http://eprint.iacr.org/2008/469.pdf
http://eprint.iacr.org/2008/270.pdf
http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc3174
http://tools.ietf.org/html/rfc6234
http://www.cs.colorado.edu/~jrblack/papers/md5e-full.pdf
http://tools.ietf.org/html/rfc6151
http://en.wikipedia.org/wiki/Image:MD5.png
http://cryptography.gmu.edu/athena/index.php?id=source_codes


YODA Phase 2 

VADER 

 

 
 

19 

Appendices 

Appendix A – Timing of hashes 
int main (intargc, constchar * argv[]) 
{ 
structtimevalstart_time, end_time; 
doublerun_time; 
 
hashwrapper *h = newmd5wrapper(); 
h->test(); 
std::string md5; 
gettimeofday(&start_time, NULL); 
for (inti = 0; i<N_RUNS; i++) 
md5 = h->getHashFromString("hello world"); 
gettimeofday(&end_time, NULL); 
 std::cout<<"md5: "<< md5 <<std::endl; 
run_time = ((double)(end_time.tv_sec) + (double)(end_time.tv_usec)/1000000.0) 
    - ((double)(start_time.tv_sec) + (double)(start_time.tv_usec)/1000000.0); 
std::cout<<"time taken for md5: "<<run_time<<std::endl; 
 
hashwrapper *s1 = newsha1wrapper(); 
s1->test(); 
std::string sha1; 
gettimeofday(&start_time, NULL); 
for (inti =0; i<N_RUNS;i++) 
sha1 = s1->getHashFromString("hello world"); 
gettimeofday(&end_time, NULL); 
std::cout<<"sha1: "<< sha1 <<std::endl; 
run_time = ((double)(end_time.tv_sec) + (double)(end_time.tv_usec)/1000000.0) 
    - ((double)(start_time.tv_sec) + (double)(start_time.tv_usec)/1000000.0); 
std::cout<<"time taken for sha1: "<<run_time<<std::endl; 
 
hashwrapper *s2 = newsha256wrapper(); 
s2->test(); 
std::string sha2; 
gettimeofday(&start_time, NULL); 
for (inti = 0; i<N_RUNS;i++) 
sha2 = s2->getHashFromString("hello world"); 
gettimeofday(&end_time, NULL); 
std::cout<<"sha256: "<< sha2 <<std::endl; 
run_time = ((double)(end_time.tv_sec) + (double)(end_time.tv_usec)/1000000.0) 
    - ((double)(start_time.tv_sec) + (double)(start_time.tv_usec)/1000000.0); 
std::cout<<"time taken for sha256: "<<run_time<<std::endl; 
 
hashwrapper *s3 = newsha512wrapper(); 
s3->test(); 
std::string sha3; 
gettimeofday(&start_time, NULL); 
for (inti = 0; i<N_RUNS; i++) 
sha3 = s3->getHashFromString("hello world"); 
gettimeofday(&end_time, NULL); 
std::cout<<"sha512: "<< sha3 <<std::endl; 
run_time = ((double)(end_time.tv_sec) + (double)(end_time.tv_usec)/1000000.0) 



YODA Phase 2 

VADER 

 

 
 

20 

    - ((double)(start_time.tv_sec) + (double)(start_time.tv_usec)/1000000.0); 
std::cout<<"time taken for sha512: "<<run_time<<std::endl; 
 
delete h; 
delete s1; 
delete s2; 
delete s3; 
return0; 
} 

  



YODA Phase 2 

VADER 

 

 
 

21 

Appendix B – Gold standard main.cpp 
int main (intargc, constchar * argv[]) 
{ 
structtimevalstart_time, end_time; 
doublerun_time; 
stringhashToFind; 
stringinitialPass = "!!!a23"; 
string hash; 
bool found = false; 
 
//    hashwrapper *h = new sha512wrapper(); 
//    hashwrapper *h = new sha256wrapper(); 
hashwrapper *h = newsha1wrapper(); 
//    hashwrapper *h = new md5wrapper(); 
h->test(); 
 
char* test = newchar[N_SIZE]; 
for (inti = 0; i<N_SIZE;i++) 
test[i] = '!'; 
 
hashToFind = h->getHashFromString(initialPass); 
cout<<"Searching for password: "<<initialPass<<" with hash of: "<<hashToFind<<endl; 
 
gettimeofday(&start_time, NULL); 
while (!found) 
    { 
 
hash = h->getHashFromString(test); 
//cout<< "testing: " << test <<" with " << md5 << " against " <<hashToFind<<endl; 
if (hash == hashToFind) 
        { 
found = true; 
break; 
        } 
else 
        { 
//            if (test[7] == '~')  
//            { 
//                if (test[6] == '~') 
//                { 
if (test[5] == '~') 
                    { 
if (test[4] == '~') 
                        { 
if (test[3] == '~') 
                            { 
if (test[2] == '~') 
                                { 
if (test[1] == '~') 
                                    { 
if (test[0] == '~') 
                                        { 
break; 



YODA Phase 2 

VADER 

 

 
 

22 

                                        } 
else 
                                        { 
test[0]++; 
test[1] = '!'; 
test[2] = '!'; 
test[3] = '!'; 
test[4] = '!'; 
test[5] = '!'; 
//                                            test[6] = '!'; 
//                                            test[7] = '!'; 
                                        } 
                                    } 
else 
                                    { 
test[1]++; 
test[2] = '!'; 
test[3] = '!'; 
test[4] = '!'; 
test[5] = '!'; 
//                                        test[6] = '!'; 
//                                        test[7] = '!'; 
                                    } 
                                } 
else 
                                { 
test[2]++; 
test[3] = '!'; 
test[4] = '!'; 
test[5] = '!'; 
//                                    test[6] = '!'; 
//                                    test[7] = '!'; 
                                } 
                            } 
else 
                            { 
test[3]++; 
test[4] = '!'; 
test[5] = '!'; 
//                                test[6] = '!'; 
//                                test[7] = '!'; 
                            } 
                        } 
else 
                        { 
test[4]++; 
test[5] = '!'; 
//                            test[6] = '!'; 
//                            test[7] = '!'; 
                        } 
                    } 
else 
                    { 



YODA Phase 2 

VADER 

 

 
 

23 

test[5]++; 
//                        test[6] = '!'; 
//                        test[7] = '!'; 
                    } 
//                } 
//                test[6]++; 
//                test[7] = '!'; 
//            } 
//            else 
//                test[7]++; 
        } 
    } 
gettimeofday(&end_time, NULL); 
cout<<"Found password as: "<< test <<" with hash of "<< hash <<endl; 
run_time = ((double)(end_time.tv_sec) + (double)(end_time.tv_usec)/1000000.0) 
    - ((double)(start_time.tv_sec) + (double)(start_time.tv_usec)/1000000.0); 
std::cout<<"Time taken to find password: "<<run_time<<std::endl; 
 
}  



YODA Phase 2 

VADER 

 

 
 

24 

Appendix C – Timing standard test results 
 1 2 3 Aver

age 
Runti
me 

Bits Hashes Hashes/s
econd 

bits/seco
nd 

Mb/s CPU 
Speed 

Clocks/
hash 

md5 17.
93 

17.
51 

15.
94 

17.1
3 

128.
00 

500000
0.00 

291883.3
1 

3736106
3.54 

37.36 270000
0000 

9250.2
72 

sha
1 

17.
28 

17.
14 

18.
22 

17.5
5 

160.
00 

500000
0.00 

284948.9
9 

4559183
9.06 

45.59 270000
0000 

9475.3
8 

sha
256 

6.4
5 

6.4
5 

6.1
3 

6.34 256.
00 

500000
0.00 

788328.1
2 

2018119
98.46 

201.8
1 

270000
0000 

3424.9
698 

sha
512 

8.3
7 

8.5
4 

8.1
8 

8.36 512.
00 

500000
0.00 

597893.0
2 

3061212
28.79 

306.1
2 

270000
0000 

4515.8
58 

 

  



YODA Phase 2 

VADER 

 

 
 

25 

Appendix D – VHDL code 
See attached 


